
econsa Documentation
Release 0.01

Linda Maokomatanda

Jun 23, 2021





CONTENTS

1 Supported by 3

Bibliography 31

Python Module Index 33

Index 35

i



ii



econsa Documentation, Release 0.01

I prefer true but imperfect knowledge, even if it leaves much undetermined and unpredictable, to a pretence of exact
knowledge that is likely to be false.

– Friedrich von Hayek, Nobel Prize Lecture

econsa is an open-source package for economists that facilitates the sound analysis of computational economic models.
It offers suitable methods for uncertainty propagation and global sensitivity analysis.

With conda available on your path, installing and testing econsa is as simple as typing

$ conda install -c opensourceeconomics econsa
$ python -c "import econsa; econsa.test()"

CONTENTS 1

https://econsa.readthedocs.io/en/latest
https://opensource.org/licenses/MIT
https://github.com/OpenSourceEconomics/econsa/actions?query=branch%3Amaster
https://www.codacy.com/gh/OpenSourceEconomics/econsa?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=OpenSourceEconomics/econsa&amp;utm_campaign=Badge_Grade
https://codecov.io/gh/OpenSourceEconomics/econsa
https://ose.zulipchat.com


econsa Documentation, Release 0.01

2 CONTENTS



CHAPTER

ONE

SUPPORTED BY

1.1 Motivation

Computational economic models clearly specify an individual’s objective and the institutional and informational con-
straints of their economic environment under which they operate. Fully-parameterized computational implementa-
tions of the economic model are estimated on observed data as to reproduce the observed individual decisions and
experiences. Based on the results, researchers can quantify the importance of competing economic mechanisms in
determining economic outcomes and forecast the effects of alternative policies before their implementation ([16]).

The uncertainties involved in such an analysis are ubiquitous. Any such model is subject to misspecification, its nu-
merical implementation introduces approximation error, the data is subject to measurement error, and the estimated
parameters remain partly uncertain.

A proper accounting of the uncertainty is a prerequisite for the use of computational models in most disciplines ([1, 11])
and has long been recognized in economics as well ([3, 5, 9]). However, in practice economists analyze the implications
of the estimated model, economists display incredible certitude ([10]) as all uncertainty is disregarded. As a result,
flawed findings are accepted as truth and contradictory results are competing. Both have the potential to undermine the
public trust in research in the long run.

Any computational economic model 𝑀 provides a mapping between its input parameters 𝑥 and the quantities of
interest 𝑦.

𝑀 : 𝑥 ∈ 𝒟𝑋 ↦→𝑦=𝑀(𝑥)

We follow [2] and use the Economic Order Quantity (EOQ) model ([6]) as a running example throughout our doc-
umentation. We thus start by explaining its basic setup first and then discuss uncertainty propagation and sensitivity
analysis.

1.1.1 EOQ model

The EOQ inventory management model provides a stylized representation of the decision problem faced by a firm that
needs to determine the order quantity of a product that minimizes the unit cost per piece. The unit cost 𝑇 depends on
the price of the product 𝐶, the size of the order 𝑋 as each comes with a fixed cost 𝑆, and an annual capital cost 𝑅
expressed as a percentage of the value of the inventory. Core simplifications of the model include a constant monthly
demand 𝑀 over the year and the delivery of each order in full when inventory reaches zero.

We can then derive the unit cost as follows:

𝑇 =
1

12 ×𝑀
×𝑅× 𝐶 ×𝑋 + 𝑆

2⏟  ⏞  
Part I

+
𝑆

𝑋
+ 𝐶⏟  ⏞  

Part II

.

3

https://github.com/OpenSourceEconomics


econsa Documentation, Release 0.01

The first part of the equation denotes the capital cost of one unit in storage. It is computed based on the ratio of the
value of the average stock and the total number of ordered units during the year. The second part captures each unit’s
cost as part of an order of size 𝑋 .

The economic order quantity 𝑋* is determined as:

𝑋* =

√︂
24 ×𝑀 × 𝑆

𝑅× 𝐶
.

The figure below reproduces the fundamental economic trade-offs of the model for a fixed parameterization of 𝑀 , 𝐶,
𝑆, and 𝑅. An increase in the size of order 𝑋 results in a decrease in the setup cost per unit, but at the same time, capital
cost increases as the stock of inventory increase.

Going forward, we treat the annual interest and depreciation rate 𝑅 as an exogenous parameter and set it to 10%. We
can map the example to our more general notation by denoting the optimal order quantity as 𝑦 and collecting the three
remaining input parameters in x as follows:

x = (𝑥1, 𝑥2, 𝑥3)𝑇 = (𝑀,𝐶, 𝑆)𝑇 .

4 Chapter 1. Supported by



econsa Documentation, Release 0.01

1.1.2 Uncertainty propagation

We start from a probabilistic model for the input parameters that is informed by, for example, expert knowledge or the
outcome of a calibration. We treat the model parameters X as a simple random vector with a joint probability density
function 𝑓X. We are not particularly interested in the uncertainty of each individual parameter of the model. Instead
we seek to learn about the induced distribution of the model output 𝑌 as the uncertainty about the model parameters
X propagates through the computational model M. We want to study the statistical properties of 𝑌 .

We now return to the example of the EOQ model. We specify a uniform distribution centered around x0 =
(𝑀,𝐶, 𝑆) = (1230, 0.0135, 2.15) and spread the support 10% above and below the center. We solve for the opti-
mal economic order quantity 𝑌 for 1, 000 random input parameters and end up with the distribution 𝑓𝑌 below.

1.1.3 Qualitative sensitivity analysis

Elementary effects

1.1.4 Quantitative sensitivity analysis

When analyzing (complex) computational models it is often unclear from the model specification alone how the inputs
of the model contribute to the outputs. As we’ve seen in the previous tutorial on Qualitative sensitivity analysis, a first
step is to sort the inputs by their respective order of importance on the outputs. In many cases however, we would
like to learn by how much the individual inputs contribute to the output in relation to the other inputs. This can be
done using Sobol indices ([13]). Classical Sobol indices are designed to work on models with independent input
variables. However, since in economics this independence assumption would be very questionable, we focus on so
called generalized Sobol indices, as those proposed by [8], that also work in the case of dependent inputs.

1.1. Motivation 5



econsa Documentation, Release 0.01

Generalized Sobol indices

Say we have a model ℳ : R𝑛 → R, 𝑥 ↦→ ℳ(𝑥) and we are interested in analyzing the variance of its output on a
given subset 𝑈 ⊂ R𝑛, i.e. we want to analyze

𝐷 := Var(ℳ|𝑈 ) :=

∫︁
𝑈

(ℳ(𝑥) − 𝜇𝑈 )2𝑓𝑋(𝑥)d𝑥

where 𝜇𝑈 :=
∫︀
𝑈
ℳ(𝑥)𝑓𝑋(𝑥)d𝑥 denotes the restricted mean of the model and 𝑓𝑋 denotes the probability density

function imposed on the input parameters. For the sake of brevity let us assume that ℳ is already restricted so that
we can drop the dependence on 𝑆. To analyze the effect of a single variable, or more general a subset of variable,
consider partitioning the model inputs as (𝑦, 𝑧) = 𝑥. The construction of Sobol and generalized Sobol indices starts
with noticing that we can decompose the overall variance as

𝐷 = Var𝑦(E𝑧 [ℳ(𝑦, 𝑧) | 𝑦]) + E𝑦 [Var𝑧(ℳ(𝑦, 𝑧) | 𝑦)]

which implies that

1 =
Var𝑦(E𝑧 [ℳ(𝑦, 𝑧) | 𝑦])

𝐷
+

E𝑦 [Var𝑧(ℳ(𝑦, 𝑧) | 𝑦)]

𝐷
=: 𝑆𝑦 + 𝑆𝑇

𝑧

We call 𝑆𝑦 the first order effect index of the subset 𝑦 and we call 𝑆𝑇
𝑧 the total effect of the subset 𝑧. Notice that for

each partition of the input space 𝑦 and 𝑧, the above provides a way of computing the fraction of explained variance.
For the sake of clarity, assume 𝑦 represent only a single input variable. Then 𝑆𝑦 can be interpreted as the effect of 𝑦 on
the variability of ℳ without considering any interaction effects with other variables. While 𝑆𝑇

𝑦 can be thought of as
representing the effect of 𝑦 on the variance via itself and all other input variables.

Again, we now apply this to the EOQ model. Given the current limits to our implementation and the fact that the
parameters of the model need to remain positive, we specify that the parameters follow a normal distribution with a
very small variance.

6 Chapter 1. Supported by



econsa Documentation, Release 0.01

Shapely values

In this overview, we give brief notational insights on variance-based sensitivity analysis as well as the Shapley value’s
theoratical framework ([14]). We follow the framework on variance-based sensitivity analysis and Shapley values
developed by [14].

Variance-based Sensitivity Analysis (SA) can be illustrated in the following manner. Consider a model with 𝑘 inputs
denoted by 𝑋𝐾 = {𝑋1, 𝑋2, 𝑋3, . . . , 𝑋𝑘} where 𝐾 = {1, 2, . . . , 𝑘}. Consider also 𝑋𝐽 , which indicates the vector of
inputs included in the index set 𝐽 ⊆ 𝑋 . The uncertainty in 𝑋𝐾 is represented by the joint cumulative distribution 𝐺𝐾 .
Furthermore, we denote the joint distribution of inputs included in the index set 𝐽 as 𝐺𝐽 and the marginal distribution
of each 𝑋𝑖 as 𝐺𝑖. The model is treated as a blackbox, and only the model response is analysed. The model response 𝑌
is a function of the inputs, i.e., 𝑌 = 𝑓(𝑋𝐾) and therefore 𝑓(𝑋𝐾) is stochastic due to the uncertainty in 𝑋𝐾 although
𝑓(·) is deterministic. Often, 𝑓(·) has a complex structure, and does not have a closed form expression. The overall
uncertainty in the model output 𝑌 caused by 𝑋𝐾 is 𝑉 𝑎𝑟[𝑌 ], where the variance is calculated with respect to the joint
distribution 𝐺𝐾 . The Shapley value then, helps us to quantify how much of 𝑉 𝑎𝑟[𝑌 ] can be attributed to each each 𝑋𝑖.

An analogous framework to the one developed for variance-based sensitivity analysis above is apparent in the specifi-
cation of the Shapley value. Formally, a k-player game with the set of players 𝐾 = {1, 2, . . . , 𝑘} is defined as a real
valued function that maps a subset of 𝐾 to its corresponding cost (or value), i.e., 𝑐 : 2𝐾 → IR with 𝑐(∅) = 0. With
this in mind, 𝑐(𝐽) then, represents the cost that arises when the players in the subset 𝐽 of 𝐾 participate in the game.
The Shapley value for player 𝑖 with respect to 𝑐(·) is defined as

𝑣𝑖 =
∑︁

𝐽⊆𝐾∖{𝑖}

(𝑘 − |𝐽 | − 1)!|𝐽 |!
𝑘!

· (𝑐(𝐽 ∪ {𝑖}) − 𝑐(𝐽)),

where |𝐽 | indicates the size of 𝐽 . In other words, 𝑣𝑖 is the incremental cost of including player 𝑖 in set 𝐽 averaged
over all sets 𝐽 ⊆ 𝐾∖{𝑖}. The Shapley value gives equal weight to each 𝑘 subset sizes and equal weights amongst the
subsets of the same size, which is important in determining the fairness of the variance allocation in the calculation
of Shapley effects in variance-based sensitivity analysis ([14]). Reconciling the two frameworks by direct comparison,
we can think of the set of 𝐾 players as the set of inputs of 𝑓(·) and define 𝑐(·) so that for 𝐽 ⊆ 𝐾, 𝑐(𝐽) measures the
variance of 𝑐(𝐽) caused by the uncertainty of the inputs in 𝐽 .

The ideal 𝑐(·) should satisfy the conditions: 𝑐(∅) = 0 and 𝑐(𝐾) = 𝑉 𝑎𝑟[𝑌 ]. Two such candidates for such 𝑐(·) can be
considered, and have been shown to be equivalent are equivalent ([14]). The first cost function is

𝑐(𝐽) = 𝑉 𝑎𝑟[𝐸[𝑌 |𝑋𝐽 ]].

This cost function satisfies the two conditions from above and was originally put forth by [12] and later adopted by [14]
in their paper. The cost function can be rewritten as 𝑐(𝐽) = 𝑉 𝑎𝑟[𝑌 ]−𝐸[𝑉 𝑎𝑟[𝑌 |𝑋𝐽 ]], and interpreted as the expected
reduction in the output variance when the values of 𝑋𝐽 are known. The second cost function that satisfies the required
conditions is

𝑐(𝐽) = 𝐸[𝑉 𝑎𝑟[𝑌 |𝑋−𝐽 ]]

where 𝑋−𝐽 = 𝑋𝐾∖𝐽 . 𝑐(𝐽) is interpreted as the expected remaining variance in 𝑌 when the values of 𝑋−𝐽 are known.
In this case, the incremental cost 𝑐(𝐽 ∪ {𝑖}) − 𝑐(𝐽) can be interpreted as the expected decrease in the variance of 𝑌
conditional on the known input values of 𝑋𝑖 out of all the unknown inputs in 𝐽 ∪ {𝑖}.

Although both cost functions result in the same Shapley values, their resultant estimators from Monte Carlo simulation
are different. [15] reveal that the Monte Carlo estimator that results from the simulation of 𝑐(𝐽) can be severely biased
if the inner level sample size used to estimate the conditional expectation is not large enough. Given the already
computationally demanding structure of microeconomic models, this added computational complexity is costly. In
contrast however, the estimator of 𝑐(𝐽) is unbiased for all sample sizes. Because of this added feature, we follow [14]
in using the cost function 𝑐(𝐽) rather that 𝑐(𝐽). We therefore define the Shapley effect of the 𝑖𝑡ℎ input, 𝑆ℎ𝑖, as the
Shapley value obtained by applying the cost function 𝑐(𝐽) to the Shapley value equation. Indeed, any Shapley value

1.1. Motivation 7



econsa Documentation, Release 0.01

defined by the satisfaction of the two conditions: 𝑐(∅) = 0 and 𝑐(𝐾) = 𝑉 𝑎𝑟[𝑌 ] imply that

𝑖=1∑︁
𝑘

𝑆ℎ𝑖 = 𝑉 𝑎𝑟[𝑌 ],

even if there is dependence or structural interactions amongst the elements in 𝑋𝐾 . Throughout the package, we use
𝑆ℎ𝑖 to denote the Shapley effect and 𝑣𝑖 to denote the generic Shapley value.

Quantile based sensitivity measures

This part will be written by Yulei Li as part of her thesis.

1.2 Methods

Here we explain and document in detail, the methods we implement in the econsa package to perform sensitivity
analysis and uncertainty quantification. An insight into how the calculations are performed is not a prerequisite for
using econsa, in most cases, the default settings works fine. Global Sensitivity Analysis can be divided into two
categories: quali- and quantitative methods. econsa implements both methods as a comprehensive to ensure flexibility
depending on your model requirements, features and specifications.

1.2.1 Qualitative sensitivity analysis

econsa applies the methods in [4] to calculate morris indices for models with dependent parameters. The Elementary
Effects (EE), also known as the Morris method, is a qualitative way to screen inputs and helps to determine the set of
influential and non-influential inputs. Shapely values on the other hand, . . .

Constributor: Janos Gabler (janosg)

Calculate morris indices for models with dependent parameters.

We convert frequently between iid uniform, iid standard normal and multivariate normal variables. To not get confused,
we use the following naming conventions:

-u refers to to uniform variables -z refers to standard normal variables -x refers to multivariate normal variables.

econsa.morris.elementary_effects(func, params, cov, n_draws, sampling_scheme='sobol', n_cores=1)
Calculate Morris Indices of a model described by func.

The distribution of the parameters is assumed to be multivariate normal, with mean params["value"] and
covariance matrix cov.

The algorithm is based on Ge and Menendez, 2017, (GM17): Extending Morris method for qualitative global
sensitivity analysis of models with dependent inputs.

Parameters

• func (function) – Function that maps parameters into a quantity of interest.

• params (pd.DataFrame) – DataFrame with arbitrary index. There must be a column called
value that contains the mean of the parameter distribution.

• cov (pd.DataFrame) – Both the index and the columns are the same as the index of params.
The covariance matrix of the parameter distribution.

• n_draws (int) – Number of draws

• sampling_scheme (str) – One of [“sobol”, “random”]. Default: “sobol”

8 Chapter 1. Supported by

https://github.com/Yuleii
https://github.com/janosg


econsa Documentation, Release 0.01

Returns

• mu_ind (float) – Absolute mean of independent part of elementary effects

• sigma_ind (float) – Standard deviation of independent part of elementary effects

1.2.2 Quantitative sensitivity analysis

econsa provides several algorithms for quantitative sensitivity analysis.

Sobol indices

We implement the methods outlined in [8].

Constributor: Tim Mensinger (timmens)

Shapley values

We implement the methods outlined in [12].

Constributor: Linda Maokomatanda (lindamaok899)

Capabilities for computation of Shapley effects.

This module contains functions to estimate shapley effects for models with dependent inputs.

econsa.shapley.get_shapley(method, model, x_all, x_cond, n_perms, n_inputs, n_output, n_outer, n_inner)
Shapley value function.

This function calculates Shapley effects and their standard errors for models with both dependent and independent
inputs. We allow for two ways to calculate Shapley effects: by examining all permutations of the given inputs or
alternatively, by randomly sampling permutations of inputs.

The function is a translation of the exact and random permutation funtions in the sensitivity package in R,
and takes the method (exact or random) as an argument and therefore estimates shapley effects in both ways.

The functions where obtained from R’s sensitiity package for the shapleyPermEx and shapleyPermRand func-
tions.

Contributor: Linda Maokomatanda

Parameters

• method (string) – Specifies which method you want to use to estimate shapley effects, the
exact or random permutations method. When the number of inputs is small, it is better to
use the exact method, and random otherwise.

• model (string) – The model/function you will calculate the shapley effects on.

• x_all (string (n)) – A function that takes n as an argument and generates a n-sample of
a d-dimensional input vector.

• x_cond (string (n, Sj, Sjc, xjc)) – A function that takes n, Sj, Sjc, xjc as arguments
and generates a n- sample an input vector corresponding to the indices in Sj conditional on
the input values xjc with the index set Sjc.

• n_perms (scalar) – This is an input for the number of permutations you want the model
to make. For the exact method, this argument is none as the number of permutations is
determined by how many inputs you have, and for the random method, this is determined
exogeniously.

1.2. Methods 9

https://github.com/timmens
https://github.com/lindamaok899
https://rdrr.io/cran/sensitivity/src/R/shapleyPermEx.R
https://rdrr.io/cran/sensitivity/src/R/shapleyPermRand.R


econsa Documentation, Release 0.01

• n_inputs (scalar) – The number of input vectors for which shapley estimates are being
estimated.

• n_output (scalar) – Monte Carlo (MC) sample size to estimate the output variance of the
model output Y.

• n_outer (scalar) – The outer Monte Carlo sample size to estimate the cost function for
c(J) = E[Var[Y|X]].

• n_inner (scalar) – The inner Monte Carlo sample size to estimate the cost function for
c(J) = Var[Y|X].

Returns effects – n dimensional DataFrame with the estimated shapley effects, the standard errors
and the confidence intervals for the input vectors.

Return type DataFrame

Quantile based sensitivity measures

We implement the methods outlined in [7].

Constributor: Yulei Li (Yuleii)

Capabilities for quantile-based sensitivity analysis.

This module contains functions to calculate the global sensitivity measures based on quantiles of the output introduced
by Kucherenko et al.(2019). Both the brute force and double loop reordering MC estimators are included.

econsa.quantile_measures.mc_quantile_measures(estimator, func, n_params, loc, scale, dist_type,
n_draws, sampling_scheme='sobol', seed=0, skip=0)

Compute the MC/QMC estimators of quantile-based global sensitivity measures.

The algorithm is described in Section 4 of Kucherenko et al.(2019).

Parameters

• estimator (string) – Specify the Monte Carlo estimator. One of [“brute force”, “DLR”],
where “DLR” denotes to the double loop reordering approach.

• func (callable) – Objective function to estimate the quantile-based measures. Must be
broadcastable.

• n_params (int) – Number of parameters of objective function.

• loc (float or np.ndarray) – The location(loc) keyword passed to scipy.stats.norm func-
tion to shift the location of “standardized” distribution. Specifically, for normal distribution
it specifies the mean array with the length of n_params.

• scale (float or np.ndarray) – The scale keyword passed to scipy.stats.norm function
to adjust the scale of “standardized” distribution. Specifically, for normal distribution it
specifies the covariance matrix of shape (n_params, n_params).

• dist_type (str) – The distribution type of inputs. Options are “Normal”, “Exponential”
and “Uniform”.

• n_draws (int) – Number of Monte Carlo draws. For double loop reordering estimator,
S. Kucherenko and S. Song(2017). suggests that n_draws should always be equal to 2𝑝 to
preserve the uniformity properties , where 𝑝 is an integer. In this function 𝑝 should be integers
between 6 and 15 if estimator is “DLR”.

• sampling_scheme (str, optional) – One of [“random”, “sobol”], default “sobol”.

• seed (int, optional) – Random number generator seed.

10 Chapter 1. Supported by

https://github.com/Yuleii
https://docs.scipy.org/doc/scipy/reference/generated/_scipy.stats.norm.html
https://docs.scipy.org/doc/scipy/reference/generated/_scipy.stats.norm.html


econsa Documentation, Release 0.01

• skip (int, optional) – Number of values to skip of Sobol sequence. Default is 0.

Returns df_measures – DataFrame containing quantile-based sensitivity measures.

Return type pd.DataFrame

1.2.3 Sampling methods

Capabilities for sampling of random input parameters.

This module contains functions to sample random input parameters.

econsa.sampling.cond_mvn(mean, cov, dependent_ind, given_ind=None, given_value=None, check_cov=True)
Conditional mean and variance function.

This function provides the conditional mean and variance-covariance matrix of [𝑌 given 𝑋], where 𝑍 = (𝑋,𝑌 )
is the fully-joint multivariate normal distribution with mean equal to mean and covariance matrix cov.

This is a translation of the main function of R package condMVNorm.

Parameters

• mean (array_like) – The mean vector of the multivariate normal distribution.

• cov (array_like) – Symmetric and positive-definite covariance matrix of the multivariate
normal distribution.

• dependent_ind (int or array_like) – The indices of dependent variables.

• given_ind (array_like, optional) – The indices of independent variables (default
value is None). If not specified return unconditional values.

• given_value (array_like, optional) – The conditioning values (default value is
None). Should be the same length as given_ind, otherwise throw an error.

• check_cov (bool, optional) – Check that cov is symmetric, and all eigenvalue is posi-
tive (default value is True).

Returns

• cond_mean (numpy.ndarray) – The conditional mean of dependent variables.

• cond_cov (numpy.ndarray) – The conditional covariance matrix of dependent variables.

Examples

>>> mean = np.array([1, 1, 1])
>>> cov = np.array([[4.0677098, -0.9620331, 0.9897267],
... [-0.9620331, 2.2775449, 0.7475968],
... [0.9897267, 0.7475968, 0.7336631]])
>>> dependent_ind = [0, ]
>>> given_ind = [1, 2]
>>> given_value = [1, -1]
>>> cond_mean, cond_cov = cond_mvn(mean, cov, dependent_ind, given_ind, given_value)
>>> np.testing.assert_almost_equal(cond_mean, -4.347531, decimal=6)
>>> np.testing.assert_almost_equal(cond_cov, 0.170718, decimal=6)

Conditional sampling from Gaussian copula.

This module contains functions to sample random input parameters from a Gaussian copula.

1.2. Methods 11

https://cran.r-project.org/package=condMVNorm


econsa Documentation, Release 0.01

econsa.copula.cond_gaussian_copula(cov, dependent_ind, given_ind, given_value_u, size=1)
Conditional sampling from Gaussian copula.

This function provides the probability distribution of conditional sample drawn from a Gaussian copula, given
covariance matrix and a uniform random vector.

Parameters

• cov (array_like) – Covariance matrix of the desired sample.

• dependent_ind (int or array_like) – The indices of dependent variables.

• given_ind (array_like) – The indices of independent variables.

• given_value_u (array_like) – The given random vector (𝑢) that is uniformly distributed
between 0 and 1.

• size (int) – Number of draws from the conditional distribution. (default value is 1)

Returns cond_quan – The conditional sample (𝐺(𝑢)) that is between 0 and 1, and has the same
length as dependent_ind.

Return type numpy.ndarray

Examples

>>> np.random.seed(123)
>>> cov = np.array([[ 3.290887, 0.465004, -3.411841],
... [ 0.465004, 3.962172, -0.574745],
... [-3.411841, -0.574745, 4.063252]])
>>> dependent_ind = 2
>>> given_ind = [0, 1]
>>> given_value_u = [0.0596779, 0.39804426]
>>> condi_value_u = cond_gaussian_copula(cov, dependent_ind, given_ind, given_value_
→˓u)
>>> np.testing.assert_almost_equal(condi_value_u[0], 0.856504, decimal=6)

1.2.4 Utility functions

This page includes useful functions that are not categorised.

Correlation

Map arbitrary correlation matrix to Gaussian.

This module implements methods from two papers to map arbitrary correlation matrix into correlation matrix for
Gaussian copulas.

econsa.correlation.gc_correlation(marginals, corr, order=15, force_calc=False)
Correlation for Gaussian copula.

This function implements the algorithm outlined in Section 4.2 of [K2012] to map arbitrary correlation matrix
to an correlation matrix for Gaussian copula. For special combination of distributions, use the values from Table
4. of [L1986].

Since chaospy’s copula functions only accept positive definite correlation matrix, this function also checks the
output, and transforms to nearest positive definite matrix if it is not already.

12 Chapter 1. Supported by



econsa Documentation, Release 0.01

Numerical integration is calculated with Gauss-Hermite quadrature ([D1984]).

Parameters

• marginals (chaospy.distributions) – Marginal distributions of the correlated vari-
ables. All marginals must be chaospy distributions, otherwise returns error.

• corr (array_like) – The correlation matrix to be transformed.

• order (int, optional) – The order of grids used to generate for integration. The total
number of used points is calculated as (order + 1)2. Values larger than 20 are not recom-
mended. (default value is 15)

• force_calc (bool, optional) – When True, calculate the covariances ignoring all spe-
cial combinations of marginals (default value is False).

Returns gc_corr – The transformed correlation matrix that is ready to be fed into a Gaussian copula.

Return type numpy.ndarray

References

Examples

>>> corr = [[1.0, 0.6, 0.3], [0.6, 1.0, 0.0], [0.3, 0.0, 1.0]]
>>> marginals = [cp.Normal(1.00), cp.Uniform(lower=-4.00), cp.Normal(4.20)]
>>> corr_transformed = gc_correlation(marginals, corr)
>>> copula = cp.Nataf(cp.J(*marginals), corr_transformed)
>>> corr_copula = np.corrcoef(copula.sample(1000000))
>>> np.testing.assert_almost_equal(corr, corr_copula, decimal=6)

1.3 Tutorials

We provide several tutorials that showcase the use case for econsa.

1.3.1 Sampling

We show how to construct correlated sample with Gaussian copula.

[1]: import chaospy as cp
import numpy as np

from econsa.correlation import gc_correlation

First we specify the marginal distributions and correlation matrix.

[2]: corr = [[1.0, 0.6, 0.2], [0.6, 1.0, 0.0], [0.2, 0.0, 1.0]]
marginals = (

cp.Normal(mu=1230),
cp.Normal(mu=0.0135),
cp.Uniform(lower=1.15, upper=3.15),

)

We then transform the correlation matrix using equation (4.5) in Kucherenko et al. (2012).

1.3. Tutorials 13



econsa Documentation, Release 0.01

[3]: corr_transformed = gc_correlation(marginals, corr)

Now we are ready to use transformed correlation matrix to sample from a Gaussian copula.

[4]: copula = cp.Nataf(cp.J(*marginals), corr_transformed)
corr_copula = np.corrcoef(copula.sample(100000))

np.round(corr_copula, decimals=4)

[4]: array([[ 1. , 0.6018, 0.2013],
[ 0.6018, 1. , -0.0018],
[ 0.2013, -0.0018, 1. ]])

1.3.2 Uncertainty propagation

We show how to conduct uncertainty propagation for the EOQ model. We can simply import the core function from
temfpy.

[1]: import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import chaospy as cp

from temfpy.uncertainty_quantification import eoq_model
from econsa.correlation import gc_correlation

Setup

We specify a uniform distribution centered around x0 = (𝑀,𝐶, 𝑆) = (1230, 0.0135, 2.15) and spread the support
10% above and below the center.

[2]: marginals = list()
for center in [1230, 0.0135, 2.15]:

lower, upper = 0.9 * center, 1.1 * center
marginals.append(cp.Uniform(lower, upper))

Independent parameters

We now construct a joint distribution for the the independent input parameters and draw a sample of 1, 000 random
samples.

[3]: distribution = cp.J(*marginals)
sample = distribution.sample(10000, rule="random")

The briefly inspect the joint distribution of 𝑀 and 𝐶.

[5]: plot_joint(sample)

14 Chapter 1. Supported by



econsa Documentation, Release 0.01

We are now ready to compute the optimal economic order quantity for each draw.

[6]: y = eoq_model(sample)

This results in the following distribution 𝑓𝑌 .

[8]: plot_quantity(y)

1.3. Tutorials 15



econsa Documentation, Release 0.01

Depdendent paramters

We now consider dependent parameters with the following correlation matrix.

[9]: corr = [[1.0, 0.6, 0.2], [0.6, 1.0, 0.0], [0.2, 0.0, 1.0]]

We approximate their joint distribution using a Gaussian copula. This requires us to map the correlation matrix of the
parameters to the correlation matrix of the copula.

[10]: corr_copula = gc_correlation(marginals, corr)
copula = cp.Nataf(distribution, corr)

We are ready to sample from the distribution.

[11]: sample = copula.sample(10000, rule="random")

Again, we briefly inspect the joint distribution which now clearly shows a dependence pattern.

[12]: plot_joint(sample)

[13]: y = eoq_model(sample)

This now results in a distribution of 𝑓𝑌 where the peak is flattened out.

[14]: plot_quantity(y)

16 Chapter 1. Supported by



econsa Documentation, Release 0.01

1.3.3 Qualitative sensitivity analysis

Morris Method

We showcase the use of econsa for qualitative sensitivity analysis.

[1]: from econsa.morris import elementary_effects
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

The module morris implements the extended Morris method as proposed by Ge & Menendez (2017). They extend
the Morris method in the sense, that their algorithm takes dependency among inputs into account.

For illustration purposes consider the Morris method for independent inputs only.

Let 𝑥 = {𝑥1, . . . , 𝑥𝑘} denote a sample of values assigned to the 𝑋𝑖’s. 𝑓(𝑥) is then the model output obtained for the
values in 𝑥. Now consider a second sample 𝑥Δ𝑖 = {𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + ∆, 𝑥𝑖+1, . . . , 𝑥𝑘} that is identical to 𝑥 up to
input 𝑥𝑖 which is varied by ∆. Then, one elementary effect for input 𝑖 is derived by

𝐸𝐸𝑖 =
𝑓(𝑥Δ𝑖) − 𝑓(𝑥)

∆
.

The above elementary effect is computed 𝑁 times, each for a varying ∆. The actual sensitivity measures resulting
from the Morris method are the mean, denoted by 𝜇*

𝑖 , and the standard deviation, denoted by 𝜎𝑖, taken from the 𝑁
elementary effects per input 𝑖.

𝜇*
𝑖 =

1

𝑁

𝑁∑︁
𝑟=1

|𝐸𝐸𝑖,𝑟|

𝜎𝑖 =

⎯⎸⎸⎷ 1

𝑁 − 1

𝑁∑︁
𝑟=1

(𝐸𝐸𝑖,𝑟 − 𝜇𝑖)2

1.3. Tutorials 17



econsa Documentation, Release 0.01

The derivation of the extended Morris indices is more complicated and we get four sensitivity indices indstead of
only two: independent and full Morris indices, (𝜇*, 𝑖𝑛𝑑

𝑖 , 𝜇*, 𝑓𝑢𝑙𝑙
𝑖 , 𝜎𝑖𝑛𝑑

𝑖 , 𝜎𝑓𝑢𝑙𝑙
𝑖 ), which are computed analogously to the

Morris indices under input independence, but are based on different elementary effects:

• 𝐸𝐸𝑖𝑛𝑑
𝑖 denotes independent elementary effects for input 𝑖, effects that exclude the contributions attributable to

the dependence between input 𝑋𝑖 and 𝑋𝑗 for 𝑖 ̸= 𝑗, and

• 𝐸𝐸𝑓𝑢𝑙𝑙
𝑖 denotes full elementary effects for input 𝑖, that include the effects due to correlation with other inputs.

The implementation of the algorithm used in econsa uses the radial design and the inverse Nataf transformation as
described in Ge & Menendez (2017).

For applying the Morris method, we need to specify the following arguments:

• func: The model for which we want to calculate the Morris indices. Note how the data needs to be accessed
within the function. See below example.

• params: The mean values of the inputs.

• cov: The variance-covariance matrix of the inputs.

• n_draws: Number of draws, which corresponds to 𝑁 above.

Additional arguments are optional.

Note that the current implementation of the Morris method in econsa does allow for Gaussian (i.e. normally distributed)
inputs only.

The func argument

func is the implementation of the model we want to conduct sensitivity analysis for. The Morris method can be applied
to all models that return a unique value for a given set of realisations of the model inputs.

The model implemented by func needs to access the inputs in the following way, if the input names are specified in
params and cov:

m = x["value"]["m"]

c = x["value"]["c"]

s = x["value"]["s"].

Alternatively we can access them via the index as well:

m = x["value"][0]

c = x["value"][1]

s = x["value"][2].

[2]: def eoq_model_morris(x, r=0.1):
"""EOQ Model that accesses data as expected by elementary_effects."""
m = x["value"]["m"]
c = x["value"]["c"]
s = x["value"]["s"]

# Need to ensure that there exists a solution (i.e. no NaNs).
if m < 0:

m = 0
elif c < 0:

raise ValueError
(continues on next page)

18 Chapter 1. Supported by



econsa Documentation, Release 0.01

(continued from previous page)

elif s < 0:
s = 0

else:
pass

return np.sqrt((24 * m * s) / (r * c))

The params and cov arguments

Specify the input names in the data frames params and cov to display the input names in the output of
elementary_effects. params is a vector of means of the normally distributed model inputs. params needs to
be a pandas.DataFrame with a colum called "value", which contains the means of the inputs.

cov is the corresponding variance-covariance matrix. The variance-covariance matrix describes the dependence struc-
ture of the inputs. As params, cov needs to be a pandas.DataFrame. Indices need to be the same as in params.

[3]: names = ['m', 'c', 's']
params = pd.DataFrame(data=np.array([5.345, 0.0135, 2.15]), columns=['value'],␣
→˓index=names)
cov = pd.DataFrame(data=np.diag([1, 0.000001, 0.01]), columns=names, index=names)

The n_draws argument

n_draws is the number of elementary effects we want to use for the computation of the Morris indices. The total
computational cost of the extended Morris method amounts to 3𝑘𝑁 , where 𝑘 denotes the number of inputs and 𝑁 the
number of draws (n_draws).

[4]: n_draws = 100

The sampling_scheme and seed arguments

By specifying sampling_scheme we can choose how uniformly distributed samples are drawn. The uniformly dis-
tributed samples are then transfomed to dependently and normally distributed samples. “sobol” is used to sample
from a low-discrepancy seuqence which generates more evenly distributed samples. When using “random”, we get
pseudo-random samples. seed denotes the corresponding seed when generating random numbers. The default is that
sampling_scheme = “sobol” and seed = 1.

The n_cores argument

Parallelising code is done by the Python built-in multiprocessing module, where n_cores is the number of cores
employed. The default is that that n_cores is set to 1.

[5]: results = elementary_effects(eoq_model_morris, params, cov, n_draws)

1.3. Tutorials 19



econsa Documentation, Release 0.01

The output

The output of elementary_effects is a dictionary containing the four sensitivity indices derived from the n_draws
elementary effects: (𝜇*, 𝑖𝑛𝑑

𝑖 , 𝜇*, 𝑓𝑢𝑙𝑙
𝑖 , 𝜎𝑖𝑛𝑑

𝑖 , 𝜎𝑓𝑢𝑙𝑙
𝑖 ). The Morris indices are accessed as shown below.

Independent Morris indices (𝜇*, 𝑖𝑛𝑑
𝑖 , 𝜎𝑖𝑛𝑑

𝑖 )

[6]: morris_ind = pd.DataFrame(pd.concat((results['mu_ind'], results['sigma_ind']), axis=1))
morris_ind.columns = ['mu', 'sigma']
morris_ind

[6]: mu sigma
m 152.932694 54.844400
c 57.953365 17.314969
s 33.104776 7.963128

Full Morris indices (𝜇*, 𝑓𝑢𝑙𝑙
𝑖 , 𝜎𝑓𝑢𝑙𝑙

𝑖 )

[7]: morris_full = pd.DataFrame(pd.concat((results['mu_corr'], results['sigma_corr']),␣
→˓axis=1))
morris_full.columns = ['mu', 'sigma']
morris_full

[7]: mu sigma
m 2369.122666 2523.492389
c 3270.066313 8210.375153
s 2888.326540 3814.720109

Plotting the results

The input ranking is conducted based on (𝜇*, 𝑖𝑛𝑑
𝑖 , 𝜇*, 𝑓𝑢𝑙𝑙

𝑖 ).

[8]: def plot_morris_indices(morris_full, morris_ind):
fig, ax = plt.subplots(2, 1)
sns.set_style("whitegrid")

sns.scatterplot(x=morris_full['mu'], y=morris_full['sigma'], data=morris_full,␣
→˓ax=ax[0])

sns.scatterplot(x=morris_ind['mu'], y=morris_ind['sigma'], data=morris_full,␣
→˓ax=ax[1])

ax[0].set_title('Full Morris indices')

ax[0].text(x=morris_full['mu'].iloc[0] + 20, y=morris_full['sigma'].iloc[0], s='m')
ax[0].text(x=morris_full['mu'].iloc[1] + 20, y=morris_full['sigma'].iloc[1], s='c')
ax[0].text(x=morris_full['mu'].iloc[2] + 20, y=morris_full['sigma'].iloc[2], s='s')

ax[1].set_title('Independent Morris indices')

(continues on next page)

20 Chapter 1. Supported by



econsa Documentation, Release 0.01

(continued from previous page)

ax[1].text(x=morris_ind['mu'].iloc[0] + 2, y=morris_ind['sigma'].iloc[0], s='m')
ax[1].text(x=morris_ind['mu'].iloc[1] + 2, y=morris_ind['sigma'].iloc[1], s='c')
ax[1].text(x=morris_ind['mu'].iloc[2] + 2, y=morris_ind['sigma'].iloc[2], s='s')

plt.tight_layout()
plt.show()

[9]: plot_morris_indices(morris_full, morris_ind)

Interpretation

The input ranking based on (𝜇*, 𝑖𝑛𝑑
𝑖 , 𝜇*, 𝑓𝑢𝑙𝑙

𝑖 ) differs when independent or full indices are considered.

The ranking in ascending order according to full indices is 𝑐−𝑠−𝑚, whereas the ranking based on independent inidces
is 𝑚− 𝑐− 𝑠. For input 𝑚 this means that the variance contribution due to the isolated effect of 𝑚 is much larger than
the contribution due to dependence with other inputs. Inputs 𝑐 and 𝑠, though, exhibit large effects due to dependence.

Since none of the inputs is close to zero, we can conclude that all three inputs are important in terms of their output
variance contribution.

[ ]:

1.3.4 Quantitative sensitivity analysis

Generalized Sobol Indices

Here we show how to compute generalized Sobol indices on the EOQ model using the algorithm presented in
Kucherenko et al. 2012. We import our model function from temfpy and use the Kucherenko indices function from
econsa.

[1]: import matplotlib.pyplot as plt # noqa: F401
import numpy as np

(continues on next page)

1.3. Tutorials 21



econsa Documentation, Release 0.01

(continued from previous page)

from temfpy.uncertainty_quantification import eoq_model

# TODO: Reactivate once Tim's PR is ready.
# from econsa.kucherenko import kucherenko_indices # noqa: E265

The function kucherenko_indices expects the input function to be broadcastable over rows, that is, a row represents
the input arguments for one evaluation. For sampling around the mean parameters we specify a diagonal covariance
matrix, where the variances depend on the scaling of the mean. Since the variances of the parameters are unknown
prior to our analysis we choose values such that the probability of sampling negative values is negligible. We do this
since the EOQ model is not defined for negative parameters and the normal sampling does not naturally account for
bounds.

[2]: def eoq_model_transposed(x):
"""EOQ Model but with variables stored in columns."""
return eoq_model(x.T)

mean = np.array([1230, 0.0135, 2.15])
cov = np.diag([1, 0.000001, 0.01])

# indices = kucherenko_indices( # noqa: E265
# func=eoq_model_transposed, # noqa: E265
# sampling_mean=mean, # noqa: E265
# sampling_cov=cov, # noqa: E265
# n_draws=1_000_000, # noqa: E265
# sampling_scheme="sobol", # noqa: E265
# ) # noqa: E265

Now we are ready to inspect the results.

[4]: # fig # noqa: E265

Shapley Effects

econsa offers an implementation of the algorithm for the computation of Shapley effects as propsoed by Song et
al. (2016). Here we show how to compute Shapley effects using the EOQ model as referenced above. We adjust the
model in temfpy to accomodate an n-dimensional array for use in the context of the Shapley effects as implemented
in econsa.

[6]: # import necessary packages and functions
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import chaospy as cp

from econsa.shapley import get_shapley
from econsa.shapley import _r_condmvn

22 Chapter 1. Supported by



econsa Documentation, Release 0.01

Sampling via x_all and x_cond, and the model of interest model

First, we load all neccesary objects for the estimation of Shapley effects. The following objects are needed in the case
of Gaussian model inputs.

• The functions x_all and x_cond for (un-)conditional sampling. These functions depend on the distribution
from which we are sampling from. For the purposes of this illustration, we will sample from a multivariate
normal distribution, but the functions can be tailored to the user’s specific needs.

• A mean vector and covariance matrix of the model inputs. They are necessary for sampling conducted by the
above two functions in the case of a Gaussian distribution.

• The model the user wishes to perform sensitivity analysis (SA) on that maps model inputs to a model output.
Here we consider the EOQ model.

[7]: # Mean vector and covariance matrix of the model inputs.
n_inputs = 3
mean = np.array([5.345, 0.0135, 2.15])
cov = np.diag([1, 0.000001, 0.01])

Choosing n_perms

Since we are conducting SA on a model with three inputs, the number of permutations on which the computation
algorithm is based is 3! = 6. For larger number of inputs it might be worthwhile to consider only a subset of all
permutations. E.g. for a model with 10 inputs, there are 3,628,800 permutations. Considering all permutations could
be computationally infeasible. Thus, get_shapley allows the user to set a specific number of permutations by the
argument n_perms.

Choosing the number of Monte Carlo (MC) runs n_output, n_outer, and n_inner

𝑁𝑉 , 𝑁𝑂, and𝑁𝐼 denote the function arguments n_output, n_outer, and n_inner, respectively. For the algorithm by
Song et al. (2016) these three MC simulations are needed. The number of model evaluations required for the estimation
of Shapley effects by get_shapley are given by

𝑁𝑉 + 𝑚 ·𝑁𝐼 ·𝑁𝑂 · (𝑘 − 1),

where 𝑚 denotes the number of permutations, n_perms, and 𝑘 the number of inputs, n_inputs.

Song et al. (2016) show that choosing 𝑁𝐼 = 3 is optimal. 𝑁𝑉 needs to be large enough to reliably estimate the total
output variance, 𝑉 [𝑌 ]. Given these choices, 𝑁𝑂 is chosen to consume the rest of the computational budget.

[8]: # Model for which senstivity analysis is being performed.
def eoq_model_ndarray(x, r=0.1):

"""EOQ Model that accepts ndarray."""
m = x[:, 0]
c = x[:, 1]
s = x[:, 2]
return np.sqrt((24 * m * s) / (r * c))

[9]: # Function for unconditional sampling.
def x_all(n):

distribution = cp.MvNormal(mean, cov)
return distribution.sample(n)

(continues on next page)

1.3. Tutorials 23



econsa Documentation, Release 0.01

(continued from previous page)

# Function for conditional sampling in the case of Gaussian inputs.
def x_cond(n, subset_j, subsetj_conditional, xjc):

if subsetj_conditional is None:
cov_int = np.array(cov)
cov_int = cov_int.take(subset_j, axis = 1)
cov_int = cov_int[subset_j]
distribution = cp.MvNormal(mean[subset_j], cov_int)
return distribution.sample(n)

else:
return _r_condmvn(n, mean=mean, cov=cov, dependent_ind=subset_j, given_

→˓ind=subsetj_conditional, x_given=xjc)

[11]: # Estimate Shapley effects using the exact method.
np.random.seed(1234)
method = "exact"
n_perms = None
n_output = 10 ** 4
n_outer = 10 ** 3
n_inner = 3

exact_shapley = get_shapley(method, eoq_model_ndarray, x_all, x_cond, n_perms, n_inputs,␣
→˓n_output, n_outer, n_inner)

[12]: exact_shapley

[12]: Shapley effects std. errors CI_min CI_max
X1 0.828423 0.008709 0.811353 0.845493
X2 0.130322 0.004717 0.121077 0.139568
X3 0.041255 0.012115 0.017509 0.065000

[13]: # Estimate Shapley effects using the random method.
np.random.seed(1234)
method = "random"
n_perms = 5
n_output = 10 ** 4
n_outer = 10 ** 3
n_inner = 3

random_shapley = get_shapley(method, eoq_model_ndarray, x_all, x_cond, n_perms, n_inputs,
→˓ n_output, n_outer, n_inner)

[15]: random_shapley

[15]: Shapley effects std. errors CI_min CI_max
X1 0.817302 0.015392 0.787134 0.847470
X2 0.129110 0.003608 0.122037 0.136182
X3 0.053588 0.013530 0.027069 0.080108

Now we plot the ranking of the Shapley values below.

24 Chapter 1. Supported by



econsa Documentation, Release 0.01

[17]: # plot for exact and random permutations methods
ranking(data = df)

As noticed above, both methods produce the same ranking. Sometimes, it is neccesary to compare the parameter esti-
mates with their parameter values. A typical application is hypothesis testing, that is, whether the parameter estimates
are significant, and what the contribution of significant / insignificant estimates is to the output variance as reflected by
their Shapley ranking.

We can plot the parameter estimates together with their Shapley ranking as shown below:

[19]: # plot exact method comparison
ranking_params_shapley(ordered_df)

[21]: # plot random method comparison
ranking_params_shapley(ordered_df)

1.3. Tutorials 25



econsa Documentation, Release 0.01

When do we use randomly sampled permutations? Choosing method

The exact method is good for use when the number of parameters is low, depending on the computational time it
takes to estimate the model in question. If it is computationally inexpensive to estimate the model for which sensitivity
analysis is required, then the exact method is always preferable, otherwise the random is recommended. A good
way to proceed if one suspects that the computational time required to estimate the model is high, having a lot of
parameters to conduct SA on is always to commence the exercise with a small number of parameters, e.g. 3, then get
a benchmark of the Shapley effects using the exact method. Having done that, repeat the exercise using the random
method on the same vector of parameters, calibrating the n_perms argument to make sure that the results produced
by the random method are the same as the exact one. Once this is complete, scale up the exercise using the random
method, increasing the number of parameters to the desired parameter vector.

Quantile Based Sensitivity Measures

We show how to compute global sensitivity measures based on quantiles of model’s output.

[19]: # import necessary packages and functions
import numpy as np
import pandas as pd
import chaospy as cp
import matplotlib.pyplot as plt
import seaborn as sns

from temfpy.uncertainty_quantification import eoq_model
from econsa.quantile_measures import mc_quantile_measures

Firstly, we specify the parameters of the function. This function mc_quantile_measures is capable of computing
numerical results of quantile-based sensitivity measures on various user-provided models. Here we take EOQ model
from temfpy as an example, where the model function is adjusted to accommodate an n-dimensional array. For mul-
tivariate distributed samples, the loc and scale keywords are denoted by a mean vector and a covariance matrix
respectively. Considering both efficient computation and good convergence, we set n_draws equal to 3000 and 213 for
brute force and double loop reordering estimators correspondently. Note that the double loop reordering estimator is
more efficient than the brute force estimator.

26 Chapter 1. Supported by



econsa Documentation, Release 0.01

[20]: # model to perform quantile based sensitivity ananlysis
def eoq_model_transposed(x):

"""EOQ Model but with variables stored in columns."""
return eoq_model(x.T)

[21]: # mean and covaraince matrix inputs
mean = np.array([5.345, 0.0135, 2.15])
cov = np.diag([1, 0.000001, 0.01])
n_params = len(mean)
dist_type = "Normal"

Then we are ready to calculate the numerical results using the algorithm presented in Kucherenko et al. 2019.

[22]: # compute quantile measures using brute force estimator
bf_measures = mc_quantile_measures("brute force", eoq_model_transposed, n_params, mean,␣
→˓cov, dist_type, 3000,)

[23]: bf_measures

[23]: x_1 x_2 x_3
Measures alpha
q_1 0.020 64.010462 10.595192 6.522037

0.052 53.565287 11.764802 7.126140
0.084 47.203635 11.849184 7.315335
0.116 43.584702 11.945758 7.390247
0.148 40.746792 12.074625 7.493912

... ... ... ...
Q_2 0.852 0.851180 0.108055 0.040765

0.884 0.857788 0.102897 0.039315
0.916 0.863797 0.099314 0.036889
0.948 0.871352 0.093822 0.034825
0.980 0.880632 0.089250 0.030119

[124 rows x 3 columns]

[24]: # compute quantile measures using double loop reordering estimator
dlr_measures = mc_quantile_measures("DLR", eoq_model_transposed, n_params, mean, cov,␣
→˓dist_type, 2 ** 13,)

[25]: dlr_measures

[25]: x_1 x_2 x_3
Measures alpha
q_1 0.020 64.179809 10.414823 6.285291

0.052 52.267399 11.037341 6.778817
0.084 46.311146 11.211302 6.917412
0.116 42.563103 11.407816 7.013578
0.148 40.321098 11.638289 7.183969

... ... ... ...
Q_2 0.852 0.865417 0.097312 0.037271

0.884 0.871006 0.093422 0.035572
0.916 0.876810 0.089801 0.033388
0.948 0.883911 0.084970 0.031119

(continues on next page)

1.3. Tutorials 27



econsa Documentation, Release 0.01

(continued from previous page)

0.980 0.890728 0.081605 0.027667

[124 rows x 3 columns]

Now we are able to visualize the results.

[27]: # plot brute force estimates
plot_quantile_measures(bf_measures)

[28]: # plot double loop reordering estimates
plot_quantile_measures(dlr_measures)

28 Chapter 1. Supported by



econsa Documentation, Release 0.01

The brute force estimator and DLR estimator generate the same ranking of variables for all quantiles: 𝑥1, 𝑥2, 𝑥3(in
descending order). At 𝛼 = 0.5, measures 𝑄𝑖 reachs their minimun:𝑖 = 1 and maximum:𝑖 = 2, 3.

1.4 Published versions

1.5 Acknowledgements

econsa is developed and maintained as part of the OpenSourceEconomics initiative.

Project Manager

• Philipp Eisenhauer (peisenha)

Developers

• Linda Maokomatanda (lindamaok899)

• Janos Gabler (janosg)

• Tim Mensinger (timmens)

• Leiqiong Wan (loikein)

• Yulei Li (Yuleii)

• Benedikt Müller(bhmueller)

1.4. Published versions 29

https://OpenSourceEconomics.github.io
https://github.com/peisenha
https://github.com/lindamaok899
https://github.com/janosg
https://github.com/timmens
https://github.com/loikein
https://github.com/Yuleii
https://github.com/bhmueller


econsa Documentation, Release 0.01

1.6 Related work

We are drawing on related work throughout.

1.6.1 Software

• Feinberg, J., and Langtangen, H. P. (2015). Chaospy: An open source tool for designing methods of uncertainty
quantification. Journal of Computational Science, 11, 46-57.

• Herman, J., and Usher, W. (2017). SALib: An open-source Python library for sensitivity analysis. Journal of
Open Source Software, 2 (9).

• Tennoe S., Halnes G., and Einevoll G.T. (2018). Uncertainpy: A Python toolbox for uncertainty quantification
and sensitivity analysis in computational neuroscience. Frontiers in Neuroinformatics, 12, 49.

1.6.2 Books

• Ghanem, R., Higdon, D., and Owhadi, H. (2017). Handbook of uncertainty quantification. Cham, Switzerland:
Springer International Publishing.

• Saltelli et al. (2008). Global sensitivity analysis: The primer. Chichester, UK: John Wiley & Sons Ltd.

• Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice: A guide to
assessing scientific models. Chichester, UK: John Wiley & Sons Ltd.

• Smith, R.C. (2014). Uncertainty quantification: Theory, implementation, and applications. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

• Sullivan, T.J. (2015). Introduction to uncertainty quantification. Cham, Switzerland: Springer International
Publishing.

1.6.3 Popular science

• King, M., and Kay, J. (2020). Radical uncertainty: Decision-making for an unknowable future. London, UK:
The Bridge Street Press.

1.7 Bibliography

30 Chapter 1. Supported by



BIBLIOGRAPHY

[K2012] Kucherenko, S., Tarantola, S., & Annoni, P. (2012). Estimation of global sensitivity indices for models with
dependent variables. Computer Physics Communications, 183(4), 937–946.

[L1986] Liu, P., & Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covari-
ances. Probabilistic Engineering Mechanics, 1(2), 105–112.

[D1984] Davis, P. J., & Rabinowitz, P. (1984). Methods of numerical integration (2nd ed.). Academic Press.

[1] Marvin L. Adams, editor. Assessing the reliability of complex models: Mathematical and statistical foun-
dations of verification, validation, and uncertainty quantification. National Academies Press, Washington,
D.C., 2012.

[2] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of recent advances. European Jour-
nal of Operational Research, 248(3):869–887, 2016.

[3] Fabio Canova. Statistical inference in calibrated models. Journal of Applied Econometrics, 9(1):123–144,
1994.

[4] Qiao Ge and Monica Menendez. An efficient sensitivity analysis approach for computationally expensive
microscopic traffic simulation models. International Journal of Transportation, 2(2):49–64, 2014.

[5] Lars Peter Hansen and James J. Heckman. The empirical foundations of calibration. Journal of economic
perspectives, 10(1):87–104, 1996.

[6] Ford W. Harris. How many parts to make at once. Operations Research, 38(6):947–950, 1990.

[7] Sergei Kucherenko, Shufang Song, and Lu Wang. Quantile based global sensitivity measures. Reliability
Engineering & System Safety, 185:35–48, 2019.

[8] Sergei Kucherenko, Stefano Tarantola, and Paola Annoni. Estimation of global sensitivity indices for models
with dependent variables. Computer Physics Communications, 183(4):937–946, 2012.

[9] Finn E. Kydland. On the econometrics of world business cycles. European Economic Review, 36(2-
3):476–482, 1992.

[10] Charles F. Manski. Communicating uncertainty in policy analysis. Proceedings of the National Academy of
Sciences, 116(16):7634–7641, 2019.

[11] William L. Oberkampf and Christopher J. Roy. Verification and validation in scientific computing. Cambridge
University Press, Cambridge, UK, 2010.

[12] Art B. Owen. Sobol' indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification,
2(1):245–251, 2014.

[13] I. Sobol. On sensitivity estimation for nonlinear mathematical models. Math. Modelling & Comp. Exp, 1993.

[14] Eunhye Song, Barry L Nelson, and Jeremy Staum. Shapley effects for global sensitivity analysis: theory and
computation. SIAM/ASA Journal on Uncertainty Quantification, 4(1):1060–1083, 2016.

31



econsa Documentation, Release 0.01

[15] Yunpeng Sun, Daniel W Apley, and Jeremy Staum. Efficient nested simulation for estimating the variance of
a conditional expectation. Operations research, 59(4):998–1007, 2011.

[16] Kenneth I. Wolpin. The limits to inference without theory. MIT University Press, Cambridge, MA, 2013.

32 Bibliography



PYTHON MODULE INDEX

e
econsa.copula, 11
econsa.correlation, 12
econsa.morris, 8
econsa.quantile_measures, 10
econsa.sampling, 11
econsa.shapley, 9

33



econsa Documentation, Release 0.01

34 Python Module Index



INDEX

C
cond_gaussian_copula() (in module econsa.copula),

11
cond_mvn() (in module econsa.sampling), 11

E
econsa.copula

module, 11
econsa.correlation

module, 12
econsa.morris

module, 8
econsa.quantile_measures

module, 10
econsa.sampling

module, 11
econsa.shapley

module, 9
elementary_effects() (in module econsa.morris), 8

G
gc_correlation() (in module econsa.correlation), 12
get_shapley() (in module econsa.shapley), 9

M
mc_quantile_measures() (in module

econsa.quantile_measures), 10
module

econsa.copula, 11
econsa.correlation, 12
econsa.morris, 8
econsa.quantile_measures, 10
econsa.sampling, 11
econsa.shapley, 9

35


	Supported by
	Motivation
	EOQ model
	Uncertainty propagation
	Qualitative sensitivity analysis
	Elementary effects

	Quantitative sensitivity analysis
	Generalized Sobol indices
	Shapely values
	Quantile based sensitivity measures


	Methods
	Qualitative sensitivity analysis
	Quantitative sensitivity analysis
	Sobol indices
	Shapley values
	Quantile based sensitivity measures

	Sampling methods
	Utility functions
	Correlation


	Tutorials
	Sampling
	Uncertainty propagation
	Setup
	Independent parameters
	Depdendent paramters

	Qualitative sensitivity analysis
	Morris Method
	The func argument
	The params and cov arguments
	The n_draws argument
	The sampling_scheme and seed arguments
	The n_cores argument
	The output
	Independent Morris indices (i, ind, iind)
	Full Morris indices (i, full, ifull)

	Plotting the results
	Interpretation


	Quantitative sensitivity analysis
	Generalized Sobol Indices
	Shapley Effects
	Sampling via x_all and x_cond, and the model of interest model
	Choosing n_perms
	Choosing the number of Monte Carlo (MC) runs n_output, n_outer, and n_inner
	When do we use randomly sampled permutations? Choosing method


	Quantile Based Sensitivity Measures


	Published versions
	Acknowledgements
	Related work
	Software
	Books
	Popular science

	Bibliography

	Bibliography
	Python Module Index
	Index

