
econsa Documentation
Release 0.01

Linda Maokomatanda

Jul 24, 2020

CONTENTS

1 Supported by 3

Bibliography 15

Python Module Index 17

Index 19

i

ii

econsa Documentation, Release 0.01

docsdocs passingpassing

LicenseLicense MITMIT

codecovcodecov 90%90%

code qualitycode quality

code stylecode style blackblack

codecovcodecov 90%90%

zulipzulip join chatjoin chat

I prefer true but imperfect knowledge, even if it leaves much undetermined and unpredictable, to a pretence of exact
knowledge that is likely to be false.

– Friedrich von Hayek, Nobel Prize Lecture

econsa is an open-source package for economists that facilitates the sound analysis of computational economic
models. It offers suitable methods for uncertainty propagation and global sensitivity analysis.

With conda available on your path, installing and testing econsa is as simple as typing

$ conda install -c opensourceeconomics econsa
$ python -c "import econsa; econsa.test()"

CONTENTS 1

https://econsa.readthedocs.io/en/latest
https://opensource.org/licenses/MIT
https://github.com/OpenSourceEconomics/econsa/actions?query=branch%3Amaster
https://www.codacy.com/gh/OpenSourceEconomics/econsa?utm_source=github.com&utm_medium=referral&utm_content=OpenSourceEconomics/econsa&utm_campaign=Badge_Grade
https://github.com/psf/black
https://codecov.io/gh/OpenSourceEconomics/econsa
https://ose.zulipchat.com

econsa Documentation, Release 0.01

2 CONTENTS

CHAPTER

ONE

SUPPORTED BY

1.1 Motivation

Computational economic models clearly specify an individual’s objective and the institutional and informational con-
straints of their economic environment under which they operate. Fully-parameterized computational implementa-
tions of the economic model are estimated on observed data as to reproduce the observed individual decisions and
experiences. Based on the results, researchers can quantify the importance of competing economic mechanisms in
determining economic outcomes and forecast the effects of alternative policies before their implementation ([12]).

The uncertainties involved in such an analysis are ubiquitous. Any such model is subject to misspecification, its
numerical implementation introduces approximation error, the data is subject to measurement error, and the estimated
parameters remain partly uncertain.

A proper accounting of the uncertainty is a prerequisite for the use of computational models in most disciplines
([1][10]) and has long been recognized in economics as well ([5][3][8]). However, in practice economists analyze
the implications of the estimated model, economists display incredible certitude ([9]) as all uncertainty is disregarded.
As a result, flawed findings are accepted as truth and contradictory results are competing. Both have the potential to
undermine the public trust in research in the long run.

Any computational economic model 𝑀 provides a mapping between its input parameters 𝑥 and the quantities of
interest 𝑦.

𝑀 : 𝑥 ∈ 𝒟𝑋 ↦→𝑦=𝑀(𝑥)

We follow [2] and use the Economic Order Quantity (EOQ) model ([6]) as a running example throughout our
documentation. We thus start by explaining its basic setup first and then discuss uncertainty propagation and sensitivity
analysis.

3

https://github.com/OpenSourceEconomics

econsa Documentation, Release 0.01

1.1.1 EOQ model

The EOQ inventory management model provides a stylized representation of the decision problem faced by a firm
that needs to determine the order quantity of a product that minimizes the unit cost per piece. The unit cost 𝑇 depends
on the price of the product 𝐶, the size of the order 𝑋 as each comes with a fixed cost 𝑆, and an annual capital cost 𝑅
expressed as a percentage of the value of the inventory. Core simplifications of the model include a constant monthly
demand 𝑀 over the year and the delivery of each order in full when inventory reaches zero.

We can then derive the unit cost as follows:

𝑇 =
1

12×𝑀
×𝑅× 𝐶 ×𝑋 + 𝑆

2⏟ ⏞
Part I

+
𝑆

𝑋
+ 𝐶⏟ ⏞

Part II

.

The first part of the equation denotes the capital cost of one unit in storage. It is computed based on the ratio of the
value of the average stock and the total number of ordered units during the year. The second part captures each unit’s
cost as part of an order of size 𝑋 .

The economic order quantity 𝑋* is determined as:

𝑋* =

√︂
24×𝑀 × 𝑆

𝑅× 𝐶
.

The figure below reproduces the fundamental economic trade-offs of the model for a fixed parameterization of 𝑀 , 𝐶,
𝑆, and 𝑅. An increase in the size of order 𝑋 results in a decrease in the setup cost per unit, but at the same time,
capital cost increases as the stock of inventory increase.

Going forward, we treat the annual interest and depreciation rate 𝑅 as an exogenous parameter and set it to 10%. We
can map the example to our more general notation by denoting the optimal order quantity as 𝑦 and collecting the three

4 Chapter 1. Supported by

econsa Documentation, Release 0.01

remaining input parameters in x as follows:

x = (𝑥1, 𝑥2, 𝑥3)
𝑇 = (𝑀,𝐶, 𝑆)𝑇 .

1.1.2 Uncertainty propagation

We start from a probabilistic model for the input parameters that is informed by, for example, expert knowledge or the
outcome of a calibration. We treat the model parameters X as a simple random vector with a joint probability density
function 𝑓X. We are not particularly interested in the uncertainty of each individual parameter of the model. Instead
we seek to learn about the induced distribution of the model output 𝑌 as the uncertainty about the model parameters
X propagates through the computational model M. We want to study the statistical properties of 𝑌 .

We now return to the example of the EOQ model. We specify a uniform distribution centered around x0 =
(𝑀,𝐶, 𝑆) = (1230, 0.0135, 2.15) and spread the support 10% above and below the center. We solve for the opti-
mal economic order quantity 𝑌 for 1, 000 random input parameters and end up with the distribution 𝑓𝑌 below.

1.1.3 Sensitivity analysis

sensitivity analysis, hierarchization of input parameter with respect to the resulting uncertainty.

1.1. Motivation 5

econsa Documentation, Release 0.01

Quantitative sensitivity analysis

Elementary effects

Qualitative sensitivity analysis

Sobol indices

This part will be written by timmens as part of his thesis.

Shapely values

This part will be written by lindamaok899 as part of her thesis.

1.2 Methods

Here we explain and document in detail, the methods we implement in the econsa package to perform sensitivity
analysis and uncertainty quantification. An insight into how the calculations are performed is not a prerequisite
for using econsa, in most cases, the default settings works fine. Global Sensitivity Analysis can be divided into
two categories: quali- and quantitative methods. econsa implements both methods as a comprehensive to ensure
flexibility depending on your model requirements, features and specifications.

1.2.1 Qualitative sensitivity analysis

econsa applies the methods in [4] to calculate morris indices for models with dependent parameters. The Elementary
Effects (EE), also known as the Morris method, is a qualitative way to screen inputs and helps to determine the set of
influential and non-influential inputs. Shapely values on the other hand, . . .

Constributor: Janos Gabler (janosg)

Calculate morris indices for models with dependent parameters.

We convert frequently between iid uniform, iid standard normal and multivariate normal variables. To not get confused,
we use the following naming conventions:

-u refers to to uniform variables -z refers to standard normal variables -x refers to multivariate normal variables.

econsa.morris.elementary_effects(func, params, cov, n_draws, sampling_scheme='sobol',
n_cores=1)

Calculate Morris Indices of a model described by func.

The distribution of the parameters is assumed to be multivariate normal, with mean params["value"] and
covariance matrix cov.

The algorithm is based on Ge and Menendez, 2017, (GM17): Extending Morris method for qualitative global
sensitivity analysis of models with dependent inputs.

Parameters

• func (function) – Function that maps parameters into a quantity of interest.

• params (pd.DataFrame) – DataFrame with arbitrary index. There must be a column
called value that contains the mean of the parameter distribution.

6 Chapter 1. Supported by

https://github.com/timmens
https://github.com/lindamaok899
https://github.com/janosg

econsa Documentation, Release 0.01

• cov (pd.DataFrame) – Both the index and the columns are the same as the index of
params. The covariance matrix of the parameter distribution.

• n_draws (int) – Number of draws

• sampling_scheme (str) – One of [“sobol”, “random”]. Default: “sobol”

Returns

• mu_ind (float) – Absolute mean of independent part of elementary effects

• sigma_ind (float) – Standard deviation of independent part of elementary effects

1.2.2 Quantitative sensitivity analysis

econsa provides several algorithms for quantitative sensitivity analysis.

Sobol indices

We implement the methods outlined in [7].

Constributor: Tim Mensinger (timmens)

Shapley values

We implement the methods outlined in [11].

Constributor: Linda Maokomatanda (lindamaok899)

1.2.3 Sampling methods

Capabilities for sampling of random input parameters.

This module contains functions to sample random input parameters.

econsa.sampling.cond_mvn(mean, cov, dependent_ind, given_ind=None, given_value=None,
check_cov=True)

Conditional mean and variance function.

This function provides the conditional mean and variance-covariance matrix of [𝑌 given 𝑋], where 𝑍 = (𝑋,𝑌)
is the fully-joint multivariate normal distribution with mean equal to mean and covariance matrix cov.

This is a translation of the main function of R package condMVNorm.

Parameters

• mean (array_like) – The mean vector of the multivariate normal distribution.

• cov (array_like) – Symmetric and positive-definite covariance matrix of the multivari-
ate normal distribution.

• dependent_ind (int or array_like) – The indices of dependent variables.

• given_ind (array_like, optional) – The indices of independent variables (de-
fault value is None). If not specified return unconditional values.

• given_value (array_like, optional) – The conditioning values (default value
is None). Should be the same length as given_ind, otherwise throw an error.

1.2. Methods 7

https://github.com/timmens
https://github.com/lindamaok899
https://cran.r-project.org/package=condMVNorm

econsa Documentation, Release 0.01

• check_cov (bool, optional) – Check that cov is symmetric, and all eigenvalue is
positive (default value is True).

Returns

• cond_mean (array_like) – The conditional mean of dependent variables.

• cond_cov (arrray_like) – The conditional covariance matrix of dependent variables.

Examples

>>> mean = np.array([1, 1, 1])
>>> cov = np.array([[4.0677098, -0.9620331, 0.9897267],
... [-0.9620331, 2.2775449, 0.7475968],
... [0.9897267, 0.7475968, 0.7336631]])
>>> dependent_ind = [0,]
>>> given_ind = [1, 2]
>>> given_value = [1, -1]
>>> cond_mean, cond_cov = cond_mvn(mean, cov, dependent_ind, given_ind, given_
→˓value)
>>> np.testing.assert_almost_equal(cond_mean, -4.347531, decimal=6)
>>> np.testing.assert_almost_equal(cond_cov, 0.170718, decimal=6)

Conditional sampling from Gaussian copula.

This module contains functions to sample random input parameters from a Gaussian copula.

econsa.copula.cond_gaussian_copula(cov, dependent_ind, given_ind, given_value_u, size=1)
Conditional sampling from Gaussian copula.

This function provides the probability distribution of conditional sample drawn from a Gaussian copula, given
covariance matrix and a uniform random vector.

Parameters

• cov (array_like) – Covariance matrix of the desired sample.

• dependent_ind (int or array_like) – The indices of dependent variables.

• given_ind (array_like) – The indices of independent variables.

• given_value_u (array_like) – The given random vector (𝑢) that is uniformly dis-
tributed between 0 and 1.

• size (int) – Number of draws from the conditional distribution. (default value is 1)

Returns cond_quan – The conditional sample (𝐺(𝑢)) that is between 0 and 1, and has the same
length as dependent_ind.

Return type numpy.ndarray

8 Chapter 1. Supported by

econsa Documentation, Release 0.01

Examples

>>> np.random.seed(123)
>>> cov = np.array([[3.290887, 0.465004, -3.411841],
... [0.465004, 3.962172, -0.574745],
... [-3.411841, -0.574745, 4.063252]])
>>> dependent_ind = 2
>>> given_ind = [0, 1]
>>> given_value_u = [0.0596779, 0.39804426]
>>> condi_value_u = cond_gaussian_copula(cov, dependent_ind, given_ind, given_
→˓value_u)
>>> np.testing.assert_almost_equal(condi_value_u[0], 0.856504, decimal=6)

1.3 Tutorials

We provide several tutorials that showcase the use case for econsa.

1.3.1 The EOQ model and uncertainty propagation

We show how to conduct uncertainty propagation for the EOQ model. We can simply import the core function from
temfpy.

[139]: import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sns
import chaospy as cp

from temfpy.uncertainty_quantification import eoq_model

Setup

We specify a uniform distribution centered around x0 = (𝑀,𝐶, 𝑆) = (1230, 0.0135, 2.15) and spread the support
10% above and below the center.

[140]: marginals = list()
for center in [1230, 0.0135, 2.15]:

lower, upper = 0.9 * center, 1.1 * center
marginals.append(cp.Uniform(lower, upper))

Independent parameters

We now construct a joint distribution for the the independent input parameters and draw a sample of 1, 000 random
samples.

[147]: distribution = cp.J(*marginals)
sample = distribution.sample(10000, rule="random")

The briefly inspect the joint distribution of 𝑀 and 𝐶.

[149]: plot_joint(sample)

1.3. Tutorials 9

econsa Documentation, Release 0.01

We are now ready to compute the optimal economic order quantity for each draw.

[150]: y = eoq_model(sample)

This results in the following distribution 𝑓𝑌 .

[152]: plot_quantity(y)

10 Chapter 1. Supported by

econsa Documentation, Release 0.01

Depdendent paramters

We now consider dependent parameters and construct their joint distribution using a Gaussian copula.

[153]: corr = [[1.0, 0.6, 0.2], [0.6, 1.0, 0.0], [0.2, 0.0, 1.0]]
copula = cp.Nataf(distribution, corr)

We are ready to sample from the distribution.

[154]: sample = copula.sample(1000, rule="random")

Again, we briefly inspect the joint distribution which now clearly shows a dependence pattern.

[155]: plot_joint(sample)

[156]: y = eoq_model(sample)

This now results in a distribution of 𝑓𝑌 where the peak is flattened out.

[160]: plot_quantity(y)

1.3. Tutorials 11

econsa Documentation, Release 0.01

1.3.2 Qualitative sensitivity analysis

We showcase the use of econsa for qualitative sensitivity analysis.

[7]: # from temfpy.uncertainty_quantification import simple_linear_function,
from econsa.morris import elementary_effects # noqa: F401
import numpy as np

This is an example where we extracted the sampling from the
function to compute the elementary effects.
input_parameters = np.random.normal(size=(100, 4))
n_draws, cov = 100, np.identity(3)

TODO: This requires some more work to set up.
rslt = elementary_effects(simple_linear_function, input_parameters, cov, n_draws)

1.4 Projects

econsa is under active development in support of several research and educational projects.

1.4.1 Research

• Eisenhauer, P., Gabler, J., Janys, L., & Mensinger, T. (2020). Uncertainty quantification for structural econo-
metric models. Unpublished Working Paper .

12 Chapter 1. Supported by

econsa Documentation, Release 0.01

1.4.2 Thesis

• Maokomatanda, L. (2020). . . .

• Mensinger, T. (2020). . . .

• Wan, L. (2020). . . .

1.5 Published versions

1.6 Acknowledgements

econsa is developed and maintained as part of the OpenSourceEconomics initiative.

Project Manager

• Philipp Eisenhauer (peisenha)

Developers

• Linda Maokomatanda (lindamaok899)

• Janos Gabler (janosg)

• Tim Mensinger (timmens)

• Leiqiong Wan (loikein)

1.7 Related work

We are drawing on related work throughout.

1.7.1 Software

• Feinberg, J., and Langtangen, H. P. (2015). Chaospy: an open source tool for designing methods of uncertainty
quantification. Journal of Computational Science, 11, 46-57.

• Herman, J., and Usher, W. (2017). SALib: an open-source Python library for sensitivity analysis. Journal of
Open Source Software, 2 (9).

• Tennoe S., Halnes G., and Einevoll G.T. (2018). Uncertainpy: a Python toolbox for uncertainty quantification
and sensitivity analysis in computational neuroscience. Frontiers in Neuroinformatics, 12, 49.

1.7.2 Books

• Ghanem, R., Higdon, D., and Owhadi, H. (2017). Handbook of uncertainty quantification. Cham, Switzerland:
Springer International Publishing.

• Saltelli et al. (2008). Global Sensitivity Analysis. The Primer. Chichester, UK: John Wiley & Sons Ltd.

• Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice. A guide to
assessing scientific models. Chichester, UK: John Wiley & Sons Ltd.

• Smith, R.C. (2014). Uncertainty quantification: theory, implementation, and applications. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

1.5. Published versions 13

https://OpenSourceEconomics.github.io
https://github.com/peisenha
https://github.com/lindamaok899
https://github.com/janosg
https://github.com/timmens
https://github.com/loikein

econsa Documentation, Release 0.01

• Sullivan, T.J. (2015). Introduction to uncertainty quantification. Cham, Switzerland: Springer International
Publishing.

1.7.3 Popular science

• King, M., and Kay, J. (2020). Radical uncertainty: decision-making for an unknowable future. London, UK:
The Bridge Street Press.

1.8 Bibliography

14 Chapter 1. Supported by

BIBLIOGRAPHY

[1] Marvin L. Adams, editor. Assessing the reliability of complex models: mathematical and statistical foundations
of verification, validation, and uncertainty quantification. National Academies Press, Washington, D.C., 2012.

[2] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: a review of recent advances. European Journal
of Operational Research, 248(3):869–887, 2016.

[3] Fabio Canova. Statistical inference in calibrated models. Journal of Applied Econometrics, 9(1):123–144, 1994.

[4] Qiao Ge and Monica Menendez. An efficient sensitivity analysis approach for computationally expensive micro-
scopic traffic simulation models. International Journal of Transportation, 2(2):49–64, 2014.

[5] Lars Peter Hansen and James J. Heckman. The empirical foundations of calibration. Journal of economic per-
spectives, 10(1):87–104, 1996.

[6] Ford W. Harris. How many parts to make at once. Operations Research, 38(6):947–950, 1990.

[7] Sergei Kucherenko, Stefano Tarantola, and Paola Annoni. Estimation of global sensitivity indices for models
with dependent variables. Computer Physics Communications, 183(4):937–946, 2012.

[8] Finn E. Kydland. On the econometrics of world business cycles. European Economic Review, 36(2-3):476–482,
1992.

[9] Charles F. Manski. Communicating uncertainty in policy analysis. Proceedings of the National Academy of
Sciences, 116(16):7634–7641, 2019.

[10] William L. Oberkampf and Christopher J. Roy. Verification and validation in scientific computing. Cambridge
University Press, Cambridge, UK, 2010.

[11] Art B. Owen. Sobol’ indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2(1):245–251,
2014.

[12] Kenneth I. Wolpin. The limits to inference without theory. MIT University Press, Cambridge, MA, 2013.

15

econsa Documentation, Release 0.01

16 Bibliography

PYTHON MODULE INDEX

e
econsa.copula, 8
econsa.morris, 6
econsa.sampling, 7

17

econsa Documentation, Release 0.01

18 Python Module Index

INDEX

C
cond_gaussian_copula() (in module

econsa.copula), 8
cond_mvn() (in module econsa.sampling), 7

E
econsa.copula

module, 8
econsa.morris

module, 6
econsa.sampling

module, 7
elementary_effects() (in module econsa.morris),

6

M
module

econsa.copula, 8
econsa.morris, 6
econsa.sampling, 7

19

	Supported by
	Bibliography
	Python Module Index
	Index

