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I prefer true but imperfect knowledge, even if it leaves much undetermined and unpredictable, to a pretence of exact
knowledge that is likely to be false.

— Friedrich von Hayek, Nobel Prize Lecture

econsa is an open-source package for economists that facilitates the sound analysis of computational economic models.
It offers suitable methods for uncertainty propagation and global sensitivity analysis.

With conda available on your path, installing and testing econsa is as simple as typing

$ conda install -c opensourceeconomics econsa
$ python -c "import econsa; econsa.test()"
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1.1 Motivation

Computational economic models clearly specify an individual’s objective and the institutional and informational con-
straints of their economic environment under which they operate. Fully-parameterized computational implementa-
tions of the economic model are estimated on observed data as to reproduce the observed individual decisions and
experiences. Based on the results, researchers can quantify the importance of competing economic mechanisms in
determining economic outcomes and forecast the effects of alternative policies before their implementation ([16]).

The uncertainties involved in such an analysis are ubiquitous. Any such model is subject to misspecification, its nu-
merical implementation introduces approximation error, the data is subject to measurement error, and the estimated
parameters remain partly uncertain.

A proper accounting of the uncertainty is a prerequisite for the use of computational models in most disciplines ([1][11])
and has long been recognized in economics as well ([5][3][9]). However, in practice economists analyze the implica-
tions of the estimated model, economists display incredible certitude ([10]) as all uncertainty is disregarded. As a result,
flawed findings are accepted as truth and contradictory results are competing. Both have the potential to undermine the
public trust in research in the long run.

Any computational economic model M provides a mapping between its input parameters « and the quantities of
interest y.

M :x e DX»—»y:M(a:)

We follow [2] and use the Economic Order Quantity (EOQ) model ([6]) as a running example throughout our doc-
umentation. We thus start by explaining its basic setup first and then discuss uncertainty propagation and sensitivity
analysis.

1.1.1 EOQ model

The EOQ inventory management model provides a stylized representation of the decision problem faced by a firm that
needs to determine the order quantity of a product that minimizes the unit cost per piece. The unit cost 7" depends on
the price of the product C, the size of the order X as each comes with a fixed cost .S, and an annual capital cost R
expressed as a percentage of the value of the inventory. Core simplifications of the model include a constant monthly
demand M over the year and the delivery of each order in full when inventory reaches zero.

‘We can then derive the unit cost as follows:

1 CxX+S S
Te— - EXAT0 2 o)
12 %1 <X 5y tx*tC
Part I Part 1T
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The first part of the equation denotes the capital cost of one unit in storage. It is computed based on the ratio of the
value of the average stock and the total number of ordered units during the year. The second part captures each unit’s
cost as part of an order of size X.

The economic order quantity X * is determined as:

24 x M x S
X =\——F—.
RxC

The figure below reproduces the fundamental economic trade-offs of the model for a fixed parameterization of M, C,
S, and R. An increase in the size of order X results in a decrease in the setup cost per unit, but at the same time, capital
cost increases as the stock of inventory increase.

— Setup
Capital
—— Total

Cost

S —

\

1,000 2,000 X* 3,000 4,000

Size of order

Going forward, we treat the annual interest and depreciation rate R as an exogenous parameter and set it to 10%. We
can map the example to our more general notation by denoting the optimal order quantity as y and collecting the three
remaining input parameters in x as follows:

X = (x17$23x3)T = (Ma Ca S)T
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1.1.2 Uncertainty propagation

We start from a probabilistic model for the input parameters that is informed by, for example, expert knowledge or the
outcome of a calibration. We treat the model parameters X as a simple random vector with a joint probability density
function fx. We are not particularly interested in the uncertainty of each individual parameter of the model. Instead
we seek to learn about the induced distribution of the model output Y as the uncertainty about the model parameters
X propagates through the computational model M. We want to study the statistical properties of Y.

We now return to the example of the EOQ model. We specify a uniform distribution centered around x° =
(M,C,S) = (1230,0.0135,2.15) and spread the support 10% above and below the center. We solve for the opti-
mal economic order quantity Y for 1,000 random input parameters and end up with the distribution fy- below.

fy

6,000 6,500 7,000 7,500 8,000
y

1.1.3 Qualitative sensitivity analysis
Elementary effects

1.1.4 Quantitative sensitivity analysis

When analyzing (complex) computational models it is often unclear from the model specification alone how the inputs
of the model contribute to the outputs. As we’ve seen in the previous tutorial on Qualitative sensitivity analysis, a first
step is to sort the inputs by their respective order of importance on the outputs. In many cases however, we would
like to learn by how much the individual inputs contribute to the output in relation to the other inputs. This can be
done using Sobol indices ([13]). Classical Sobol indices are designed to work on models with independent input
variables. However, since in economics this independence assumption would be very questionable, we focus on so
called generalized Sobol indices, as those proposed by [8], that also work in the case of dependent inputs.

1.1. Motivation 5
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Generalized Sobol indices

Say we have a model M : R® — R,z — M(x) and we are interested in analyzing the variance of its output on a
given subset U C R", i.e. we want to analyze

D= Var(Mly) = [ (M(&) = ) (o)

where py = [, M(x)fx(x)dz denotes the restricted mean of the model and fx denotes the probability density
function imposed on the input parameters. For the sake of brevity let us assume that M is already restricted so that
we can drop the dependence on S. To analyze the effect of a single variable, or more general a subset of variable,
consider partitioning the model inputs as (y, z) = . The construction of Sobol and generalized Sobol indices starts
with noticing that we can decompose the overall variance as

D = Var, (E, [M(y, 2) | y]) + E, [Var,(M(y, 2) | )]

which implies that

_ Vary(E: [M(y,2) [9]) | Ey [Var:(M(y, 2) | y)]

1
D D

=: Sy-l-Sz

We call Sy, the first order effect index of the subset y and we call ST the total effect of the subset z. Notice that for
each partition of the input space y and z, the above provides a way of computing the fraction of explained variance.
For the sake of clarity, assume y represent only a single input variable. Then S, can be interpreted as the effect of y on
the variability of M without considering any interaction effects with other variables. While Sg can be thought of as
representing the effect of y on the variance via itself and all other input variables.

Again, we now apply this to the EOQ model. Given the current limits to our implementation and the fact that the
parameters of the model need to remain positive, we specify that the parameters follow a normal distribution with a
very small variance.

1.0,

I First-order
[ Total

0.8

0.61

0.4

0.2

0.0

Xo
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Shapely values

In this overview, we give brief notational insights on variance-based sensitivity analysis as well as the Shapley value’s
theoratical framework ([14]). We follow the framework on variance-based sensitivity analysis and Shapley values
developed by [14].

Variance-based Sensitivity Analysis (SA) can be illustrated in the following manner. Consider a model with & inputs
denoted by X = {X1, X9, X3,..., X} where K = {1,2,...,k}. Consider also X ;, which indicates the vector of
inputs included in the index set J C X. The uncertainty in X g is represented by the joint camulative distribution Gx.
Furthermore, we denote the joint distribution of inputs included in the index set .J as G ; and the marginal distribution
of each X, as GG;. The model is treated as a blackbox, and only the model response is analysed. The model response Y’
is a function of the inputs, i.e., Y = f(Xx) and therefore f (X ) is stochastic due to the uncertainty in X x although
f(+) is deterministic. Often, f(-) has a complex structure, and does not have a closed form expression. The overall
uncertainty in the model output Y caused by X is Var[Y], where the variance is calculated with respect to the joint
distribution G'ic. The Shapley value then, helps us to quantify how much of Var[Y] can be attributed to each each X;;.

An analogous framework to the one developed for variance-based sensitivity analysis above is apparent in the specifi-
cation of the Shapley value. Formally, a k-player game with the set of players K = {1,2,...,k} is defined as a real
valued function that maps a subset of K to its corresponding cost (or value), i.e., ¢ : 2% — TR with ¢()) = 0. With
this in mind, ¢(J) then, represents the cost that arises when the players in the subset J of K participate in the game.
The Shapley value for player ¢ with respect to ¢(+) is defined as

w= 3 EEVLEOVR ooy — e,
JCK\{i} '

where |J| indicates the size of J. In other words, v; is the incremental cost of including player ¢ in set J averaged
over all sets J C K\{¢}. The Shapley value gives equal weight to each k subset sizes and equal weights amongst the
subsets of the same size, which is important in determining the fairness of the variance allocation in the calculation
of Shapley effects in variance-based sensitivity analysis ([14]). Reconciling the two frameworks by direct comparison,
we can think of the set of K players as the set of inputs of f(-) and define ¢(-) so that for J C K, ¢(J) measures the
variance of ¢(J) caused by the uncertainty of the inputs in J.

The ideal ¢(-) should satisfy the conditions: ¢(@)) = 0 and ¢(K) = Var[Y]. Two such candidates for such ¢(-) can be
considered, and have been shown to be equivalent are equivalent ([14]). The first cost function is

&(J) = Var[E[Y|X,]].

This cost function satisfies the two conditions from above and was originally put forth by [12] and later adopted by [14]
in their paper. The cost function can be rewritten as ¢(J) = Var[Y] — E[Var[Y|X ;]], and interpreted as the expected
reduction in the output variance when the values of X ; are known. The second cost function that satisfies the required
conditions is

c(J) = EVar[Y|X_,]]

where X_; = X\ 5. ¢(J) is interpreted as the expected remaining variance in Y when the values of X _; are known.
In this case, the incremental cost ¢(J U {i}) — ¢(J) can be interpreted as the expected decrease in the variance of Y’
conditional on the known input values of X; out of all the unknown inputs in J U {¢}.

Although both cost functions result in the same Shapley values, their resultant estimators from Monte Carlo simulation
are different. [15] reveal that the Monte Carlo estimator that results from the simulation of ¢(.J) can be severely biased
if the inner level sample size used to estimate the conditional expectation is not large enough. Given the already
computationally demanding structure of microeconomic models, this added computational complexity is costly. In
contrast however, the estimator of ¢(J) is unbiased for all sample sizes. Because of this added feature, we follow [14]
in using the cost function ¢(J) rather that ¢(J). We therefore define the Shapley effect of the iy, input, Sh;, as the
Shapley value obtained by applying the cost function ¢(J) to the Shapley value equation. Indeed, any Shapley value

1.1. Motivation 7
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defined by the satisfaction of the two conditions: ¢(f)) = 0 and ¢(K) = Var[Y] imply that

i=1
ZShi = Var[Y],
k

even if there is dependence or structural interactions amongst the elements in X . Throughout the package, we use
Sh; to denote the Shapley effect and v, to denote the generic Shapley value.

Quantile based sensitivity measures

This part will be written by Yulei Li as part of her thesis.

1.2 Methods

Here we explain and document in detail, the methods we implement in the econsa package to perform sensitivity
analysis and uncertainty quantification. An insight into how the calculations are performed is not a prerequisite for
using econsa, in most cases, the default settings works fine. Global Sensitivity Analysis can be divided into two
categories: quali- and quantitative methods. econsa implements both methods as a comprehensive to ensure flexibility
depending on your model requirements, features and specifications.

1.2.1 Qualitative sensitivity analysis
econsa applies the methods in [4] to calculate morris indices for models with dependent parameters. The Elementary

Effects (EE), also known as the Morris method, is a qualitative way to screen inputs and helps to determine the set of
influential and non-influential inputs. Shapely values on the other hand, ...

Constributor: Janos Gabler (janosg)
1.2.2 Quantitative sensitivity analysis

econsa provides several algorithms for quantitative sensitivity analysis.

Sobol indices

We implement the methods outlined in [8].
Constributor: Tim Mensinger (timmens)
Shapley values

We implement the methods outlined in [12].

Constributor: Linda Maokomatanda (lindamaok899)

8 Chapter 1. Supported by
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Quantile based sensitivity measures

We implement the methods outlined in [7].

Constributor: Yulei Li (Yuleii)

1.2.3 Sampling methods

Capabilities for sampling of random input parameters.

This module contains functions to sample random input parameters.

econsa.sampling.cond_mvn(mean, cov, dependent_ind, given_ind=None, given_value=None, check_cov=True)
Conditional mean and variance function.

This function provides the conditional mean and variance-covariance matrix of [Y" given X, where Z = (X,Y")
is the fully-joint multivariate normal distribution with mean equal to mean and covariance matrix cov.

This is a translation of the main function of R package condMVNorm.

Parameters
e mean (array_like) — The mean vector of the multivariate normal distribution.

* cov (array_like) — Symmetric and positive-definite covariance matrix of the multivariate
normal distribution.

dependent_ind (int or array_like)- The indices of dependent variables.

given_ind (array_like, optional) — The indices of independent variables (default
value is None). If not specified return unconditional values.

* given_value (array_like, optional) — The conditioning values (default value is
None). Should be the same length as given_ind, otherwise throw an error.

check_cov (bool, optional) - Check that cov is symmetric, and all eigenvalue is posi-
tive (default value is True).

Returns
* cond_mean (numpy.ndarray) — The conditional mean of dependent variables.

* cond_cov (numpy.ndarray) — The conditional covariance matrix of dependent variables.

Examples

>>> mean = np.array([1, 1, 1)

>>> cov = np.array([[4.0677098, -0.9620331, 0.9897267],
[-0.9620331, 2.2775449, 0.7475968],

[0.9897267, 0.7475968, 0.7336631]])

>>> dependent_ind = [0, ]

>>> given_ind = [1, 2]

>>> given_value = [1, -1]

>>> cond_mean, cond_cov = cond_mvn(mean, cov, dependent_ind, given_ind, given_value)

>>> np.testing.assert_almost_equal (cond_mean, -4.347531, decimal=6)

>>> np.testing.assert_almost_equal (cond_cov, 0.170718, decimal=6)

Conditional sampling from Gaussian copula.

This module contains functions to sample random input parameters from a Gaussian copula.

1.2. Methods
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econsa.copula.cond_gaussian_copula(cov, dependent_ind, given_ind, given_value_u, size=1)
Conditional sampling from Gaussian copula.

This function provides the probability distribution of conditional sample drawn from a Gaussian copula, given
covariance matrix and a uniform random vector.

Parameters
* cov (array_Ilike) — Covariance matrix of the desired sample.
* dependent_ind (int or array_like)- The indices of dependent variables.
* given_ind (array_like) — The indices of independent variables.

» given_value_u (array_like)— The given random vector (u) that is uniformly distributed
between 0 and 1.

e size (int) — Number of draws from the conditional distribution. (default value is 1)

Returns cond_quan — The conditional sample (G(u)) that is between 0 and 1, and has the same
length as dependent_ind.

Return type numpy.ndarray

Examples

>>> np.random.seed(123)

>>> cov = np.array([[ 3.290887, 0.465004, -3.411841],

[ 0.465004, 3.962172, -0.574745],

P [-3.411841, -0.574745, 4.063252]1])

>>> dependent_ind 2

>>> given_ind = [0, 1]

>>> given_value_u [0.0596779, 0.39804426]

>>> condi_value_u = cond_gaussian_copula(cov, dependent_ind, given_ind, given_value_
—u)

>>> np.testing.assert_almost_equal (condi_value_u[0], 0.856504, decimal=6)

1.2.4 Utility functions

This page includes useful functions that are not categorised.

Correlation

1.3 Tutorials

We provide several tutorials that showcase the use case for econsa.

10 Chapter 1. Supported by
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1.3.1 Sampling

We show how to construct correlated sample with Gaussian copula.

import chaospy as cp
import numpy as np

from econsa.correlation import gc_correlation

First we specify the marginal distributions and correlation matrix.

corr = [[1.0, 0.6, 0.2], [0.6, 1.0, 0.0], [0.2, 0.0, 1.0]]
marginals = (

cp.Normal (mu=1230),

cp.Normal (mu=0.0135),

cp.Uniform(lower=1.15, upper=3.15),

We then transform the correlation matrix using equation (4.5) in Kucherenko et al. (2012).

corr_transformed = gc_correlation(marginals, corr)

Now we are ready to use transformed correlation matrix to sample from a Gaussian copula.

copula = cp.Nataf(cp.J(*marginals), corr_transformed)
corr_copula = np.corrcoef(copula.sample(100000))

np.round(corr_copula, decimals=4)

array([[ 1. , 0.6018, 0.2013],
[ 0.6018, 1. , -0.0018],
[ 0.2013, -0.0018, 1. 11D

1.3.2 Uncertainty propagation

We show how to conduct uncertainty propagation for the EOQ model. We can simply import the core function from
temfpy.

import matplotlib.pyplot as plt
import matplotlib as mpl

import seaborn as sns

import chaospy as cp

from temfpy.uncertainty_quantification import eogq_model
from econsa.correlation import gc_correlation

1.3. Tutorials 11
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Setup

We specify a uniform distribution centered around x° = (M, C,S) = (1230, 0.0135,2.15) and spread the support

10% above and below the center.

marginals = list()

for center in [1230, 0.0135, 2.15]:
lower, upper = 0.9 * center, 1.1 * center
marginals.append(cp.Uniform(lower, upper))

Independent parameters

We now construct a joint distribution for the the independent input parameters and draw a sample of 1,000 random

samples.

distribution = cp.J(*marginals)
sample = distribution.sample(10000, rule="random")

The briefly inspect the joint distribution of M and C.

plot_joint(sample)

00145 4

00140

U 00135 -

00130

00125 4

L100 L150 1200 L1250 1300 1350

M

We are now ready to compute the optimal economic order quantity for each draw.

12
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[6]: y = eog_model (sample)

This results in the following distribution fy .

[8]: plot_quantity(y)

fy

6,000 6500 7,000 7,500 8,000
Y

Depdendent paramters

We now consider dependent parameters with the following correlation matrix.

[9]: corr = [[1.0, 0.6, 0.2], [0.6, 1.0, 0.0], [0.2, 0.0, 1.0]]

We approximate their joint distribution using a Gaussian copula. This requires us to map the correlation matrix of the
parameters to the correlation matrix of the copula.

[10]: corr_copula = gc_correlation(marginals, corr)
copula = cp.Nataf(distribution, corr)

We are ready to sample from the distribution.

[11]: sample = copula.sample(10000, rule="random")

Again, we briefly inspect the joint distribution which now clearly shows a dependence pattern.

[12]: plot_joint(sample)

1.3. Tutorials 13
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y = eoq_model (sample)

This now results in a distribution of fy where the peak is flattened out.

plot_quantity(y)

fy
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Y
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1.3.3 Qualitative sensitivity analysis

We showcase the use of econsa for qualitative sensitivity analysis.

# from temfpy.uncertainty_quantification import simple_linear_function,
from econsa.morris import elementary_effects # noga: F401
import numpy as np

# This is an example where we extracted the sampling from the
# function to compute the elementary effects.
input_parameters = np.random.normal (size=(100, 4))

n_draws, cov = 100, np.identity(3)

# TODO: This requires some more work to set up.
# rslt = elementary_effects(simple_linear_function, input_parameters, cov, n_draws)

1.3.4 Quantitative sensitivity analysis
Generalized Sobol Indices

Here we show how to compute generalized Sobol indices on the EOQ model using the algorithm presented in
Kucherenko et al. 2012. We import our model function from temfpy and use the Kucherenko indices function from
econsa.

import matplotlib.pyplot as plt # noga: F401
import numpy as np

from temfpy.uncertainty_quantification import eoq_model

# TODO: Reactivate once Tim's PR is ready.
# from econsa.kucherenko import kucherenko_indices # noga: E265

The function kucherenko_indices expects the input function to be broadcastable over rows, that is, a row represents
the input arguments for one evaluation. For sampling around the mean parameters we specify a diagonal covariance
matrix, where the variances depend on the scaling of the mean. Since the variances of the parameters are unknown
prior to our analysis we choose values such that the probability of sampling negative values is negligible. We do this
since the EOQ model is not defined for negative parameters and the normal sampling does not naturally account for
bounds.

def eog_model_transposed(x):
"""EOQ Model but with variables stored in columns.
return eoq_model(x.T)

mirn

mean = np.array([1230, 0.0135, 2.15])
cov = np.diag([1, 0.000001, 0.01])

# indices = kucherenko_indices( # noga: E265
func=eoq_model_transposed, # noqa: E265
sampling_mean=mean, # noqa: E265
sampling_cov=cov, # noqa: E265
n_draws=1_000_000, # noga: E265
sampling_scheme="sobol", # noga: E265

#
#
#
#
#
# ) # noga: E265

1.3. Tutorials 15
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Now we are ready to inspect the results.

# fig # noga: E265

Shapley Effects

Here we show how to compute Shapley effects using the EOQ model as referenced above. We adjust the model in
temfpy to accomodate an n-dimensional array for use in the econsa Shapley effects context.

# import necessary packages and functions
import numpy as np

import pandas as pd

import chaospy as cp

import matplotlib.pyplot as plt

import seaborn as sns

from econsa.shapley import get_shapley
from econsa.shapley import _r_condmvn

Load all neccesary inputs for the model, you will need: - a vector of mean estimates - a covariance matrix - the model
you are conducting SA on - the functions x_all and x_cond for conditional sampling. These functions depend on the
distribution from which you are sampling from - for the purposes of this illustration, we will sample from a multivariate
normal distribution, but the functions can be tailored to the user’s specific needs.

# mean and covaraince matrix inputs
n_inputs = 3

mean = np.array([5.345, 0.0135, 2.15])
cov = np.diag([1, 0.000001, 0.01])

# model for which senstivity analysis is being performed
def eoq_model_ndarray(x, r=0.1):
"""EOQ Model that accepts ndarray.

e

m = x[:,0]
c = x[:,1]
s = x[:,2]

return np.sqrt((24 *m * s) / (r * c))

# functions for conditional sampling

def x_all(n):
distribution = cp.MvNormal (mean, cov)
return distribution.sample(n)

def x_cond(n, subset_j, subsetj_conditional, xjc):
if subsetj_conditional is None:
cov_int = np.array(cov)
cov_int = cov_int.take(subset_j, axis = 1)
cov_int = cov_int[subset_j]
distribution = cp.MvNormal (mean[subset_j], cov_int)
return distribution.sample(n)
else:
return _r_condmvn(n, mean = mean, cov = cov, dependent_ind = subset_j, given_ind.
.= subsetj_conditional, x_given = xjc)

16 Chapter 1. Supported by
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# estimate Shapley effects using the exact method

method = 'exact'
np.random.seed(1234)
n_perms = None
n_output = 10%%4
n_outer = 10%*3
n_inner = 10%*2

exact_shapley = get_shapley(method, eoq_model_ndarray, x_all, x_cond, n_perms, n_inputs,..
—n_output, n_outer, n_inner)

exact_shapley

Shapley effects

X1 0.814539
X2 0.130068
X3 0.055392

std. errors
0.003178
0.003394
0.004386

# estimate Shapley effects using

method = 'random'
np.random.seed(1234)
n_perms = 25000
n_output = 10%%4
n_outer = 1

n_inner = 3

CI_min CI_max
0.808311 0.820768
0.123416 0.136721
0.046797 0.063988

the random method

random_shapley = get_shapley(method, eogq_model _ndarray, x_all, x_cond, n_perms, n_inputs,
<, n_output, n_outer, n_inner)

random_shapley

Shapley effects

X1 0.814734
X2 0.130517
X3 0.054749

std. errors
0.004659
0.004570
0.004739

CI_min CI_max
0.805602 0.823866
0.121561 0.139473
0.045461 0.064038

Now we plot the ranking of the Shapley values below.

# plot for exact and random permutations methods

ranking(data = df)

1.3. Tutorials
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exact method random method
X1 - o - 5
X2-—— @ - *
3 - o
0.0 0.2 04 0.6 08 00 02 0.4 0.6 08
Shapley effect Shapley effect

As noticed above, both methods produce the same ranking. Sometimes, it is neccesary to compare the parameter
estimates with their parameter values. A typical thing to want to check for is whether the parameter estimates are
significant, and what the contribution of significant / insignificant estimates is to the output variance as reflected by
their Shapley ranking.

We can plot the parameter estimates together with their Shapley ranking as shown below:

[16]: # plot exact method comparison
ranking_params_shapley(ordered_df)

Comparison of params and Shapley effects

*1 A
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=

X3
o
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H 1 2 3 4 5
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[18]: # plot random method comparison
ranking_params_shapley(ordered_df)
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Comparison of params and Shapley effects
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When do | use which method?

The exact method is good for use when the number of parameters is low, depending on the computational time it
takes to estimate the model in question. If it is computationally inexpensive to estimate the model for which sensitivity
analysis is required, then the exact method is always preferable, otherwise the random is recommended. A good
way to proceed if one suspects that the computational time required to estimate the model is high, having a lot of
parameters to conduct SA on is always to commence the exercise with a small number of parameters, e.g. 3, then get
a benchmark of the Shapley effects using the exact method. Having done that, repeat the exercise using the random
method on the same vector of parameters, calibrating the n_perms argument to make sure that the results produced
by the random method are the same as the exact one. Once this is complete, scale up the exercise using the random
method, increasing the number of parameters to the desired parameter vector.

Quantile Based Sensitivity Measures

We show how to compute global sensitivity measures based on quantiles of model’s output.

# import necessary packages and functions
import numpy as np

import pandas as pd

import chaospy as cp

import matplotlib.pyplot as plt

import seaborn as sns

from temfpy.uncertainty_quantification import eoq_model
from econsa.quantile_measures import mc_quantile_measures

Firstly, we specify the parameters of the function. This function mc_quantile_measures is capable of computing
numerical results of quantile-based sensitivity measures on various user-provided models. Here we take EOQ model
from temfpy as an example, where the model function is adjusted to accommodate an n-dimensional array. For mul-
tivariate distributed samples, the loc and scale keywords are denoted by a mean vector and a covariance matrix
respectively. Considering both efficient computation and good convergence, we set n_draws equal to 3000 and 2'3 for
brute force and double loop reordering estimators correspondently. Note that the double loop reordering estimator is
more efficient than the brute force estimator.
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# model to perform quantile based sensitivity ananlysis
def eog_model_transposed(x):

"""EOQ Model but with variables stored in columns.

return eoq_model(x.T)

# mean and covaraince matrix inputs

mean = np.array([5.345, 0.0135, 2.15])

cov = np.diag([1l, 0.000001, 0.01])
n_params = len(mean)
dist_type = "Normal"

mirn

Then we are ready to calculate the numerical results using the algorithm presented in Kucherenko et al. 2019.

# compute quantile measures using brute force estimator
bf_measures = mc_quantile_measures('brute force", eoq_model_transposed, n_params, mean,.
—cov, dist_type, 3000,)

bf_measures

Measures alpha

q-1 0.
0
0
0
0
Q.2 0
0
0
0
0

020

.052
.084
.116
.148

.852
.884
.916
.948
.980

64.
53.
47.
43,
40.

(=N — I — I — ]

x_1

010462
565287
203635
584702
746792

.851180
.857788
.863797
.871352
.880632

[124 rows x 3 columns]

# compute quantile measures using double loop reordering estimator

10.
11.
11.
11.
12.

(= I — I — I — ]

X_2

595192
764802
849184
945758
074625

.108055
.102897
.099314
.093822
.089250

NNNNO

(= I — I — R — ]

x_3

.522037
.126140
.315335
.390247
.493912
.040765
.039315
.036889

.034825
.030119

dlr_measures = mc_quantile_measures("DLR", eoq_model_transposed, n_params, mean, cCoOV,.

—dist_type, 2 ** 13,)
dlr_measures
x_1 x_2 x_3
Measures alpha
q_1 0.020 64.179809 10.414823 6.285291
0.052 52.267399 11.037341 6.778817
0.084 46.311146 11.211302 6.917412
0.116 42.563103 11.407816 7.013578
0.148 40.321098 11.638289 7.183969
Q.2 0.852 0.865417 0.097312 0.037271
0.884 0.871006 0.093422 0.035572
0.916 0.876810 0.089801 0.033388
0.948 0.883911 0.084970 0.031119
(continues on next page)
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(continued from previous page)

0.980 0.890728 0.081605 0.027667
[124 rows x 3 columns]

Now we are able to visualize the results.

[27]: # plot brute force estimates
plot_quantile_measures(bf_measures)

Values of Q'*) and Q% versus a
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[28]: # plot double loop reordering estimates
plot_quantile_measures(dlr_measures)
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Values of Q'* and Q% versus a
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The brute force estimator and DLR estimator generate the same ranking of variables for all quantiles: z1, x5, x3(in
descending order). At o = (0.5, measures @); reachs their minimun:; = 1 and maximum:i = 2, 3.

1.4 Projects

econsa is under active development in support of several research and educational projects.

1.4.1 Research

* Eisenhauer, P., Gabler, J., Janys, L., & Mensinger, T. (2020). Uncertainty quantification for structural economet-
ric models. Unpublished Working Paper .

1.4.2 Thesis

* Maokomatanda, L. (2020). ...
e Mensinger, T. (2020). ...

e Wan, L. (2020). ...

e Li, Y. (2021). ...
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1.7 Related work

We are drawing on related work throughout.

1.7.1 Software

* Feinberg, J., and Langtangen, H. P. (2015). Chaospy: An open source tool for designing methods of uncertainty
quantification. Journal of Computational Science, 11, 46-57.

e Herman, J., and Usher, W. (2017). SALib: An open-source Python library for sensitivity analysis. Journal of
Open Source Software, 2 (9).

» Tennoe S., Halnes G., and Einevoll G.T. (2018). Uncertainpy: A Python toolbox for uncertainty quantification
and sensitivity analysis in computational neuroscience. Frontiers in Neuroinformatics, 12, 49.

1.7.2 Books

e Ghanem, R., Higdon, D., and Owhadi, H. (2017). Handbook of uncertainty quantification. Cham, Switzerland:
Springer International Publishing.

Saltelli et al. (2008). Global sensitivity analysis: The primer. Chichester, UK: John Wiley & Sons Ltd.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice: A guide to
assessing scientific models. Chichester, UK: John Wiley & Sons Ltd.

Smith, R.C. (2014). Uncertainty quantification: Theory, implementation, and applications. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

Sullivan, T.J. (2015). Introduction to uncertainty quantification. Cham, Switzerland: Springer International
Publishing.
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1.7.3 Popular science

* King, M., and Kay, J. (2020). Radical uncertainty: Decision-making for an unknowable future. London, UK:
The Bridge Street Press.
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cond_gaussian_copula() (in module econsa.copula),
9
cond_mvn() (in module econsa.sampling), 9

E
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module, 9
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